Metamath Proof Explorer


Theorem cllem0

Description: The class of all sets with property ph ( z ) is closed under the binary operation on sets defined in R ( x , y ) . (Contributed by RP, 3-Jan-2020)

Ref Expression
Hypotheses cllem0.v V=z|φ
cllem0.rex RU
cllem0.r z=Rφψ
cllem0.x z=xφχ
cllem0.y z=yφθ
cllem0.closed χθψ
Assertion cllem0 xVyVRV

Proof

Step Hyp Ref Expression
1 cllem0.v V=z|φ
2 cllem0.rex RU
3 cllem0.r z=Rφψ
4 cllem0.x z=xφχ
5 cllem0.y z=yφθ
6 cllem0.closed χθψ
7 2 elexi RV
8 7 3 1 elab2 RVψ
9 8 ralbii yVRVyVψ
10 9 ralbii xVyVRVxVyVψ
11 df-ral yVψyyVψ
12 11 ralbii xVyVψxVyyVψ
13 df-ral xVyyVψxxVyyVψ
14 10 12 13 3bitri xVyVRVxxVyyVψ
15 vex xV
16 15 4 1 elab2 xVχ
17 vex yV
18 17 5 1 elab2 yVθ
19 16 18 6 syl2anb xVyVψ
20 19 ex xVyVψ
21 20 alrimiv xVyyVψ
22 14 21 mpgbir xVyVRV