Metamath Proof Explorer


Theorem clmacl

Description: Closure of ring addition for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f F=ScalarW
clmsub.k K=BaseF
Assertion clmacl WCModXKYKX+YK

Proof

Step Hyp Ref Expression
1 clm0.f F=ScalarW
2 clmsub.k K=BaseF
3 1 2 clmsubrg WCModKSubRingfld
4 cnfldadd +=+fld
5 4 subrgacl KSubRingfldXKYKX+YK
6 3 5 syl3an1 WCModXKYKX+YK