Metamath Proof Explorer


Theorem clmfgrp

Description: The scalar ring of a subcomplex module is a group. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypothesis clm0.f F=ScalarW
Assertion clmfgrp WCModFGrp

Proof

Step Hyp Ref Expression
1 clm0.f F=ScalarW
2 clmlmod WCModWLMod
3 1 lmodfgrp WLModFGrp
4 2 3 syl WCModFGrp