Metamath Proof Explorer


Theorem clmsubrg

Description: The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses isclm.f F=ScalarW
isclm.k K=BaseF
Assertion clmsubrg WCModKSubRingfld

Proof

Step Hyp Ref Expression
1 isclm.f F=ScalarW
2 isclm.k K=BaseF
3 1 2 isclm WCModWLModF=fld𝑠KKSubRingfld
4 3 simp3bi WCModKSubRingfld