Metamath Proof Explorer


Theorem clsneircomplex

Description: The relative complement of the class S exists as a subset of the base set. (Contributed by RP, 26-Jun-2021)

Ref Expression
Hypotheses clsneibex.d D=PB
clsneibex.h H=FD
clsneibex.r φKHN
Assertion clsneircomplex φBS𝒫B

Proof

Step Hyp Ref Expression
1 clsneibex.d D=PB
2 clsneibex.h H=FD
3 clsneibex.r φKHN
4 1 2 3 clsneibex φBV
5 difssd φBSB
6 4 5 sselpwd φBS𝒫B