Metamath Proof Explorer


Theorem clsneircomplex

Description: The relative complement of the class S exists as a subset of the base set. (Contributed by RP, 26-Jun-2021)

Ref Expression
Hypotheses clsneibex.d D = P B
clsneibex.h H = F D
clsneibex.r φ K H N
Assertion clsneircomplex φ B S 𝒫 B

Proof

Step Hyp Ref Expression
1 clsneibex.d D = P B
2 clsneibex.h H = F D
3 clsneibex.r φ K H N
4 1 2 3 clsneibex φ B V
5 difssd φ B S B
6 4 5 sselpwd φ B S 𝒫 B