Metamath Proof Explorer


Theorem clsslem

Description: The closure of a subclass is a subclass of the closure. (Contributed by RP, 16-May-2020)

Ref Expression
Assertion clsslem RSr|Rrφr|Srφ

Proof

Step Hyp Ref Expression
1 sstr2 RSSrRr
2 1 anim1d RSSrφRrφ
3 2 ss2abdv RSr|Srφr|Rrφ
4 intss r|Srφr|Rrφr|Rrφr|Srφ
5 3 4 syl RSr|Rrφr|Srφ