Metamath Proof Explorer


Theorem clwlknf1oclwwlknlem2

Description: Lemma 2 for clwlknf1oclwwlkn : The closed walks of a positive length are nonempty closed walks of this length. (Contributed by AV, 26-May-2022)

Ref Expression
Assertion clwlknf1oclwwlknlem2 NwClWalksG|1stw=N=cClWalksG|11stc1stc=N

Proof

Step Hyp Ref Expression
1 2fveq3 w=c1stw=1stc
2 1 eqeq1d w=c1stw=N1stc=N
3 2 cbvrabv wClWalksG|1stw=N=cClWalksG|1stc=N
4 nnge1 N1N
5 breq2 1stc=N11stc1N
6 4 5 syl5ibrcom N1stc=N11stc
7 6 pm4.71rd N1stc=N11stc1stc=N
8 7 rabbidv NcClWalksG|1stc=N=cClWalksG|11stc1stc=N
9 3 8 eqtrid NwClWalksG|1stw=N=cClWalksG|11stc1stc=N