Metamath Proof Explorer


Theorem clwwlkgt0

Description: There is no empty closed walk (i.e. a closed walk without any edge) represented by a word of vertices. (Contributed by Alexander van der Vekens, 15-Sep-2018) (Revised by AV, 24-Apr-2021)

Ref Expression
Assertion clwwlkgt0 WClWWalksG0<W

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 1 clwwlkbp WClWWalksGGVWWordVtxGW
3 hashgt0 WWordVtxGW0<W
4 3 3adant1 GVWWordVtxGW0<W
5 2 4 syl WClWWalksG0<W