Metamath Proof Explorer


Theorem clwwlknonmpo

Description: ( ClWWalksNOnG ) is an operator mapping a vertex v and a nonnegative integer n to the set of closed walks on v of length n as words over the set of vertices in a graph G . (Contributed by AV, 25-Feb-2022) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Assertion clwwlknonmpo ClWWalksNOnG=vVtxG,n0wnClWWalksNG|w0=v

Proof

Step Hyp Ref Expression
1 fveq2 g=GVtxg=VtxG
2 eqidd g=G0=0
3 oveq2 g=GnClWWalksNg=nClWWalksNG
4 3 rabeqdv g=GwnClWWalksNg|w0=v=wnClWWalksNG|w0=v
5 1 2 4 mpoeq123dv g=GvVtxg,n0wnClWWalksNg|w0=v=vVtxG,n0wnClWWalksNG|w0=v
6 df-clwwlknon ClWWalksNOn=gVvVtxg,n0wnClWWalksNg|w0=v
7 fvex VtxGV
8 nn0ex 0V
9 7 8 mpoex vVtxG,n0wnClWWalksNG|w0=vV
10 5 6 9 fvmpt GVClWWalksNOnG=vVtxG,n0wnClWWalksNG|w0=v
11 fvprc ¬GVClWWalksNOnG=
12 fvprc ¬GVVtxG=
13 12 orcd ¬GVVtxG=0=
14 0mpo0 VtxG=0=vVtxG,n0wnClWWalksNG|w0=v=
15 13 14 syl ¬GVvVtxG,n0wnClWWalksNG|w0=v=
16 11 15 eqtr4d ¬GVClWWalksNOnG=vVtxG,n0wnClWWalksNG|w0=v
17 10 16 pm2.61i ClWWalksNOnG=vVtxG,n0wnClWWalksNG|w0=v