Metamath Proof Explorer


Theorem cncfres

Description: A continuous function on complex numbers restricted to a subset. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypotheses cncfres.1 A
cncfres.2 B
cncfres.3 F = x C
cncfres.4 G = x A C
cncfres.5 x A C B
cncfres.6 F : cn
cncfres.7 J = MetOpen abs A × A
cncfres.8 K = MetOpen abs B × B
Assertion cncfres G J Cn K

Proof

Step Hyp Ref Expression
1 cncfres.1 A
2 cncfres.2 B
3 cncfres.3 F = x C
4 cncfres.4 G = x A C
5 cncfres.5 x A C B
6 cncfres.6 F : cn
7 cncfres.7 J = MetOpen abs A × A
8 cncfres.8 K = MetOpen abs B × B
9 4 5 fmpti G : A B
10 resmpt A x C A = x A C
11 1 10 ax-mp x C A = x A C
12 4 11 eqtr4i G = x C A
13 3 6 eqeltrri x C : cn
14 rescncf A x C : cn x C A : A cn
15 1 13 14 mp2 x C A : A cn
16 12 15 eqeltri G : A cn
17 cncffvrn B G : A cn G : A cn B G : A B
18 2 16 17 mp2an G : A cn B G : A B
19 9 18 mpbir G : A cn B
20 eqid abs A × A = abs A × A
21 eqid abs B × B = abs B × B
22 20 21 7 8 cncfmet A B A cn B = J Cn K
23 1 2 22 mp2an A cn B = J Cn K
24 19 23 eleqtri G J Cn K