| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncfres.1 |
⊢ 𝐴 ⊆ ℂ |
| 2 |
|
cncfres.2 |
⊢ 𝐵 ⊆ ℂ |
| 3 |
|
cncfres.3 |
⊢ 𝐹 = ( 𝑥 ∈ ℂ ↦ 𝐶 ) |
| 4 |
|
cncfres.4 |
⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 5 |
|
cncfres.5 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) |
| 6 |
|
cncfres.6 |
⊢ 𝐹 ∈ ( ℂ –cn→ ℂ ) |
| 7 |
|
cncfres.7 |
⊢ 𝐽 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) |
| 8 |
|
cncfres.8 |
⊢ 𝐾 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ) |
| 9 |
4 5
|
fmpti |
⊢ 𝐺 : 𝐴 ⟶ 𝐵 |
| 10 |
|
resmpt |
⊢ ( 𝐴 ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 11 |
1 10
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℂ ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 12 |
4 11
|
eqtr4i |
⊢ 𝐺 = ( ( 𝑥 ∈ ℂ ↦ 𝐶 ) ↾ 𝐴 ) |
| 13 |
3 6
|
eqeltrri |
⊢ ( 𝑥 ∈ ℂ ↦ 𝐶 ) ∈ ( ℂ –cn→ ℂ ) |
| 14 |
|
rescncf |
⊢ ( 𝐴 ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ 𝐶 ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ 𝐶 ) ↾ 𝐴 ) ∈ ( 𝐴 –cn→ ℂ ) ) ) |
| 15 |
1 13 14
|
mp2 |
⊢ ( ( 𝑥 ∈ ℂ ↦ 𝐶 ) ↾ 𝐴 ) ∈ ( 𝐴 –cn→ ℂ ) |
| 16 |
12 15
|
eqeltri |
⊢ 𝐺 ∈ ( 𝐴 –cn→ ℂ ) |
| 17 |
|
cncfcdm |
⊢ ( ( 𝐵 ⊆ ℂ ∧ 𝐺 ∈ ( 𝐴 –cn→ ℂ ) ) → ( 𝐺 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ 𝐺 : 𝐴 ⟶ 𝐵 ) ) |
| 18 |
2 16 17
|
mp2an |
⊢ ( 𝐺 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 19 |
9 18
|
mpbir |
⊢ 𝐺 ∈ ( 𝐴 –cn→ 𝐵 ) |
| 20 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) |
| 21 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) |
| 22 |
20 21 7 8
|
cncfmet |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐴 –cn→ 𝐵 ) = ( 𝐽 Cn 𝐾 ) ) |
| 23 |
1 2 22
|
mp2an |
⊢ ( 𝐴 –cn→ 𝐵 ) = ( 𝐽 Cn 𝐾 ) |
| 24 |
19 23
|
eleqtri |
⊢ 𝐺 ∈ ( 𝐽 Cn 𝐾 ) |