Metamath Proof Explorer


Theorem cncfres

Description: A continuous function on complex numbers restricted to a subset. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypotheses cncfres.1 𝐴 ⊆ ℂ
cncfres.2 𝐵 ⊆ ℂ
cncfres.3 𝐹 = ( 𝑥 ∈ ℂ ↦ 𝐶 )
cncfres.4 𝐺 = ( 𝑥𝐴𝐶 )
cncfres.5 ( 𝑥𝐴𝐶𝐵 )
cncfres.6 𝐹 ∈ ( ℂ –cn→ ℂ )
cncfres.7 𝐽 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) )
cncfres.8 𝐾 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) )
Assertion cncfres 𝐺 ∈ ( 𝐽 Cn 𝐾 )

Proof

Step Hyp Ref Expression
1 cncfres.1 𝐴 ⊆ ℂ
2 cncfres.2 𝐵 ⊆ ℂ
3 cncfres.3 𝐹 = ( 𝑥 ∈ ℂ ↦ 𝐶 )
4 cncfres.4 𝐺 = ( 𝑥𝐴𝐶 )
5 cncfres.5 ( 𝑥𝐴𝐶𝐵 )
6 cncfres.6 𝐹 ∈ ( ℂ –cn→ ℂ )
7 cncfres.7 𝐽 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) )
8 cncfres.8 𝐾 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) )
9 4 5 fmpti 𝐺 : 𝐴𝐵
10 resmpt ( 𝐴 ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥𝐴𝐶 ) )
11 1 10 ax-mp ( ( 𝑥 ∈ ℂ ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥𝐴𝐶 )
12 4 11 eqtr4i 𝐺 = ( ( 𝑥 ∈ ℂ ↦ 𝐶 ) ↾ 𝐴 )
13 3 6 eqeltrri ( 𝑥 ∈ ℂ ↦ 𝐶 ) ∈ ( ℂ –cn→ ℂ )
14 rescncf ( 𝐴 ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ 𝐶 ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ 𝐶 ) ↾ 𝐴 ) ∈ ( 𝐴cn→ ℂ ) ) )
15 1 13 14 mp2 ( ( 𝑥 ∈ ℂ ↦ 𝐶 ) ↾ 𝐴 ) ∈ ( 𝐴cn→ ℂ )
16 12 15 eqeltri 𝐺 ∈ ( 𝐴cn→ ℂ )
17 cncffvrn ( ( 𝐵 ⊆ ℂ ∧ 𝐺 ∈ ( 𝐴cn→ ℂ ) ) → ( 𝐺 ∈ ( 𝐴cn𝐵 ) ↔ 𝐺 : 𝐴𝐵 ) )
18 2 16 17 mp2an ( 𝐺 ∈ ( 𝐴cn𝐵 ) ↔ 𝐺 : 𝐴𝐵 )
19 9 18 mpbir 𝐺 ∈ ( 𝐴cn𝐵 )
20 eqid ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) )
21 eqid ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) )
22 20 21 7 8 cncfmet ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐴cn𝐵 ) = ( 𝐽 Cn 𝐾 ) )
23 1 2 22 mp2an ( 𝐴cn𝐵 ) = ( 𝐽 Cn 𝐾 )
24 19 23 eleqtri 𝐺 ∈ ( 𝐽 Cn 𝐾 )