| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cncfres.1 | ⊢ 𝐴  ⊆  ℂ | 
						
							| 2 |  | cncfres.2 | ⊢ 𝐵  ⊆  ℂ | 
						
							| 3 |  | cncfres.3 | ⊢ 𝐹  =  ( 𝑥  ∈  ℂ  ↦  𝐶 ) | 
						
							| 4 |  | cncfres.4 | ⊢ 𝐺  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) | 
						
							| 5 |  | cncfres.5 | ⊢ ( 𝑥  ∈  𝐴  →  𝐶  ∈  𝐵 ) | 
						
							| 6 |  | cncfres.6 | ⊢ 𝐹  ∈  ( ℂ –cn→ ℂ ) | 
						
							| 7 |  | cncfres.7 | ⊢ 𝐽  =  ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 8 |  | cncfres.8 | ⊢ 𝐾  =  ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 9 | 4 5 | fmpti | ⊢ 𝐺 : 𝐴 ⟶ 𝐵 | 
						
							| 10 |  | resmpt | ⊢ ( 𝐴  ⊆  ℂ  →  ( ( 𝑥  ∈  ℂ  ↦  𝐶 )  ↾  𝐴 )  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) ) | 
						
							| 11 | 1 10 | ax-mp | ⊢ ( ( 𝑥  ∈  ℂ  ↦  𝐶 )  ↾  𝐴 )  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) | 
						
							| 12 | 4 11 | eqtr4i | ⊢ 𝐺  =  ( ( 𝑥  ∈  ℂ  ↦  𝐶 )  ↾  𝐴 ) | 
						
							| 13 | 3 6 | eqeltrri | ⊢ ( 𝑥  ∈  ℂ  ↦  𝐶 )  ∈  ( ℂ –cn→ ℂ ) | 
						
							| 14 |  | rescncf | ⊢ ( 𝐴  ⊆  ℂ  →  ( ( 𝑥  ∈  ℂ  ↦  𝐶 )  ∈  ( ℂ –cn→ ℂ )  →  ( ( 𝑥  ∈  ℂ  ↦  𝐶 )  ↾  𝐴 )  ∈  ( 𝐴 –cn→ ℂ ) ) ) | 
						
							| 15 | 1 13 14 | mp2 | ⊢ ( ( 𝑥  ∈  ℂ  ↦  𝐶 )  ↾  𝐴 )  ∈  ( 𝐴 –cn→ ℂ ) | 
						
							| 16 | 12 15 | eqeltri | ⊢ 𝐺  ∈  ( 𝐴 –cn→ ℂ ) | 
						
							| 17 |  | cncfcdm | ⊢ ( ( 𝐵  ⊆  ℂ  ∧  𝐺  ∈  ( 𝐴 –cn→ ℂ ) )  →  ( 𝐺  ∈  ( 𝐴 –cn→ 𝐵 )  ↔  𝐺 : 𝐴 ⟶ 𝐵 ) ) | 
						
							| 18 | 2 16 17 | mp2an | ⊢ ( 𝐺  ∈  ( 𝐴 –cn→ 𝐵 )  ↔  𝐺 : 𝐴 ⟶ 𝐵 ) | 
						
							| 19 | 9 18 | mpbir | ⊢ 𝐺  ∈  ( 𝐴 –cn→ 𝐵 ) | 
						
							| 20 |  | eqid | ⊢ ( ( abs  ∘   −  )  ↾  ( 𝐴  ×  𝐴 ) )  =  ( ( abs  ∘   −  )  ↾  ( 𝐴  ×  𝐴 ) ) | 
						
							| 21 |  | eqid | ⊢ ( ( abs  ∘   −  )  ↾  ( 𝐵  ×  𝐵 ) )  =  ( ( abs  ∘   −  )  ↾  ( 𝐵  ×  𝐵 ) ) | 
						
							| 22 | 20 21 7 8 | cncfmet | ⊢ ( ( 𝐴  ⊆  ℂ  ∧  𝐵  ⊆  ℂ )  →  ( 𝐴 –cn→ 𝐵 )  =  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 23 | 1 2 22 | mp2an | ⊢ ( 𝐴 –cn→ 𝐵 )  =  ( 𝐽  Cn  𝐾 ) | 
						
							| 24 | 19 23 | eleqtri | ⊢ 𝐺  ∈  ( 𝐽  Cn  𝐾 ) |