| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncfres.1 |
|- A C_ CC |
| 2 |
|
cncfres.2 |
|- B C_ CC |
| 3 |
|
cncfres.3 |
|- F = ( x e. CC |-> C ) |
| 4 |
|
cncfres.4 |
|- G = ( x e. A |-> C ) |
| 5 |
|
cncfres.5 |
|- ( x e. A -> C e. B ) |
| 6 |
|
cncfres.6 |
|- F e. ( CC -cn-> CC ) |
| 7 |
|
cncfres.7 |
|- J = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) |
| 8 |
|
cncfres.8 |
|- K = ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) ) |
| 9 |
4 5
|
fmpti |
|- G : A --> B |
| 10 |
|
resmpt |
|- ( A C_ CC -> ( ( x e. CC |-> C ) |` A ) = ( x e. A |-> C ) ) |
| 11 |
1 10
|
ax-mp |
|- ( ( x e. CC |-> C ) |` A ) = ( x e. A |-> C ) |
| 12 |
4 11
|
eqtr4i |
|- G = ( ( x e. CC |-> C ) |` A ) |
| 13 |
3 6
|
eqeltrri |
|- ( x e. CC |-> C ) e. ( CC -cn-> CC ) |
| 14 |
|
rescncf |
|- ( A C_ CC -> ( ( x e. CC |-> C ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> C ) |` A ) e. ( A -cn-> CC ) ) ) |
| 15 |
1 13 14
|
mp2 |
|- ( ( x e. CC |-> C ) |` A ) e. ( A -cn-> CC ) |
| 16 |
12 15
|
eqeltri |
|- G e. ( A -cn-> CC ) |
| 17 |
|
cncfcdm |
|- ( ( B C_ CC /\ G e. ( A -cn-> CC ) ) -> ( G e. ( A -cn-> B ) <-> G : A --> B ) ) |
| 18 |
2 16 17
|
mp2an |
|- ( G e. ( A -cn-> B ) <-> G : A --> B ) |
| 19 |
9 18
|
mpbir |
|- G e. ( A -cn-> B ) |
| 20 |
|
eqid |
|- ( ( abs o. - ) |` ( A X. A ) ) = ( ( abs o. - ) |` ( A X. A ) ) |
| 21 |
|
eqid |
|- ( ( abs o. - ) |` ( B X. B ) ) = ( ( abs o. - ) |` ( B X. B ) ) |
| 22 |
20 21 7 8
|
cncfmet |
|- ( ( A C_ CC /\ B C_ CC ) -> ( A -cn-> B ) = ( J Cn K ) ) |
| 23 |
1 2 22
|
mp2an |
|- ( A -cn-> B ) = ( J Cn K ) |
| 24 |
19 23
|
eleqtri |
|- G e. ( J Cn K ) |