| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cncfres.1 |  |-  A C_ CC | 
						
							| 2 |  | cncfres.2 |  |-  B C_ CC | 
						
							| 3 |  | cncfres.3 |  |-  F = ( x e. CC |-> C ) | 
						
							| 4 |  | cncfres.4 |  |-  G = ( x e. A |-> C ) | 
						
							| 5 |  | cncfres.5 |  |-  ( x e. A -> C e. B ) | 
						
							| 6 |  | cncfres.6 |  |-  F e. ( CC -cn-> CC ) | 
						
							| 7 |  | cncfres.7 |  |-  J = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) | 
						
							| 8 |  | cncfres.8 |  |-  K = ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) ) | 
						
							| 9 | 4 5 | fmpti |  |-  G : A --> B | 
						
							| 10 |  | resmpt |  |-  ( A C_ CC -> ( ( x e. CC |-> C ) |` A ) = ( x e. A |-> C ) ) | 
						
							| 11 | 1 10 | ax-mp |  |-  ( ( x e. CC |-> C ) |` A ) = ( x e. A |-> C ) | 
						
							| 12 | 4 11 | eqtr4i |  |-  G = ( ( x e. CC |-> C ) |` A ) | 
						
							| 13 | 3 6 | eqeltrri |  |-  ( x e. CC |-> C ) e. ( CC -cn-> CC ) | 
						
							| 14 |  | rescncf |  |-  ( A C_ CC -> ( ( x e. CC |-> C ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> C ) |` A ) e. ( A -cn-> CC ) ) ) | 
						
							| 15 | 1 13 14 | mp2 |  |-  ( ( x e. CC |-> C ) |` A ) e. ( A -cn-> CC ) | 
						
							| 16 | 12 15 | eqeltri |  |-  G e. ( A -cn-> CC ) | 
						
							| 17 |  | cncfcdm |  |-  ( ( B C_ CC /\ G e. ( A -cn-> CC ) ) -> ( G e. ( A -cn-> B ) <-> G : A --> B ) ) | 
						
							| 18 | 2 16 17 | mp2an |  |-  ( G e. ( A -cn-> B ) <-> G : A --> B ) | 
						
							| 19 | 9 18 | mpbir |  |-  G e. ( A -cn-> B ) | 
						
							| 20 |  | eqid |  |-  ( ( abs o. - ) |` ( A X. A ) ) = ( ( abs o. - ) |` ( A X. A ) ) | 
						
							| 21 |  | eqid |  |-  ( ( abs o. - ) |` ( B X. B ) ) = ( ( abs o. - ) |` ( B X. B ) ) | 
						
							| 22 | 20 21 7 8 | cncfmet |  |-  ( ( A C_ CC /\ B C_ CC ) -> ( A -cn-> B ) = ( J Cn K ) ) | 
						
							| 23 | 1 2 22 | mp2an |  |-  ( A -cn-> B ) = ( J Cn K ) | 
						
							| 24 | 19 23 | eleqtri |  |-  G e. ( J Cn K ) |