Metamath Proof Explorer


Theorem cncfres

Description: A continuous function on complex numbers restricted to a subset. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypotheses cncfres.1
|- A C_ CC
cncfres.2
|- B C_ CC
cncfres.3
|- F = ( x e. CC |-> C )
cncfres.4
|- G = ( x e. A |-> C )
cncfres.5
|- ( x e. A -> C e. B )
cncfres.6
|- F e. ( CC -cn-> CC )
cncfres.7
|- J = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) )
cncfres.8
|- K = ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) )
Assertion cncfres
|- G e. ( J Cn K )

Proof

Step Hyp Ref Expression
1 cncfres.1
 |-  A C_ CC
2 cncfres.2
 |-  B C_ CC
3 cncfres.3
 |-  F = ( x e. CC |-> C )
4 cncfres.4
 |-  G = ( x e. A |-> C )
5 cncfres.5
 |-  ( x e. A -> C e. B )
6 cncfres.6
 |-  F e. ( CC -cn-> CC )
7 cncfres.7
 |-  J = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) )
8 cncfres.8
 |-  K = ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) )
9 4 5 fmpti
 |-  G : A --> B
10 resmpt
 |-  ( A C_ CC -> ( ( x e. CC |-> C ) |` A ) = ( x e. A |-> C ) )
11 1 10 ax-mp
 |-  ( ( x e. CC |-> C ) |` A ) = ( x e. A |-> C )
12 4 11 eqtr4i
 |-  G = ( ( x e. CC |-> C ) |` A )
13 3 6 eqeltrri
 |-  ( x e. CC |-> C ) e. ( CC -cn-> CC )
14 rescncf
 |-  ( A C_ CC -> ( ( x e. CC |-> C ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> C ) |` A ) e. ( A -cn-> CC ) ) )
15 1 13 14 mp2
 |-  ( ( x e. CC |-> C ) |` A ) e. ( A -cn-> CC )
16 12 15 eqeltri
 |-  G e. ( A -cn-> CC )
17 cncffvrn
 |-  ( ( B C_ CC /\ G e. ( A -cn-> CC ) ) -> ( G e. ( A -cn-> B ) <-> G : A --> B ) )
18 2 16 17 mp2an
 |-  ( G e. ( A -cn-> B ) <-> G : A --> B )
19 9 18 mpbir
 |-  G e. ( A -cn-> B )
20 eqid
 |-  ( ( abs o. - ) |` ( A X. A ) ) = ( ( abs o. - ) |` ( A X. A ) )
21 eqid
 |-  ( ( abs o. - ) |` ( B X. B ) ) = ( ( abs o. - ) |` ( B X. B ) )
22 20 21 7 8 cncfmet
 |-  ( ( A C_ CC /\ B C_ CC ) -> ( A -cn-> B ) = ( J Cn K ) )
23 1 2 22 mp2an
 |-  ( A -cn-> B ) = ( J Cn K )
24 19 23 eleqtri
 |-  G e. ( J Cn K )