Metamath Proof Explorer


Theorem cnf1dd

Description: A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypotheses cnf1dd.1 φ ψ ¬ χ
cnf1dd.2 φ ψ χ θ
Assertion cnf1dd φ ψ θ

Proof

Step Hyp Ref Expression
1 cnf1dd.1 φ ψ ¬ χ
2 cnf1dd.2 φ ψ χ θ
3 1 2 jcad φ ψ ¬ χ χ θ
4 df-or χ θ ¬ χ θ
5 pm3.35 ¬ χ ¬ χ θ θ
6 4 5 sylan2b ¬ χ χ θ θ
7 3 6 syl6 φ ψ θ