Metamath Proof Explorer


Theorem cnfcom3c

Description: Wrap the construction of cnfcom3 into an existential quantifier. For any _om C_ b , there is a bijection from b to some power of _om . Furthermore, this bijection iscanonical , which means that we can find a single function g which will give such bijections for every b less than some arbitrarily large bound A . (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Assertion cnfcom3c AOngbAωbwOn1𝑜gb:b1-1 ontoω𝑜w

Proof

Step Hyp Ref Expression
1 eqid domωCNFA=domωCNFA
2 eqid ωCNFA-1b=ωCNFA-1b
3 eqid OrdIsoEωCNFA-1bsupp=OrdIsoEωCNFA-1bsupp
4 eqid seqωkV,zVω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppk+𝑜z=seqωkV,zVω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppk+𝑜z
5 eqid seqωkV,fVxω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppkdomf+𝑜xxdomfω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppk+𝑜x-1=seqωkV,fVxω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppkdomf+𝑜xxdomfω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppk+𝑜x-1
6 eqid ω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppk=ω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppk
7 eqid xω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppkdomf+𝑜xxdomfω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppk+𝑜x-1=xω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppkdomf+𝑜xxdomfω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppk+𝑜x-1
8 eqid OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp=OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp
9 eqid uωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp,vω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsuppωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp𝑜v+𝑜u=uωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp,vω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsuppωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp𝑜v+𝑜u
10 eqid uωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp,vω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsuppω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp𝑜u+𝑜v=uωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp,vω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsuppω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp𝑜u+𝑜v
11 eqid uωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp,vω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsuppωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp𝑜v+𝑜uuωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp,vω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsuppω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp𝑜u+𝑜v-1seqωkV,fVxω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppkdomf+𝑜xxdomfω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppk+𝑜x-1domOrdIsoEωCNFA-1bsupp=uωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp,vω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsuppωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp𝑜v+𝑜uuωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp,vω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsuppω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp𝑜u+𝑜v-1seqωkV,fVxω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppkdomf+𝑜xxdomfω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppk+𝑜x-1domOrdIsoEωCNFA-1bsupp
12 eqid bω𝑜AuωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp,vω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsuppωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp𝑜v+𝑜uuωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp,vω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsuppω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp𝑜u+𝑜v-1seqωkV,fVxω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppkdomf+𝑜xxdomfω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppk+𝑜x-1domOrdIsoEωCNFA-1bsupp=bω𝑜AuωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp,vω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsuppωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp𝑜v+𝑜uuωCNFA-1bOrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp,vω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsuppω𝑜OrdIsoEωCNFA-1bsuppdomOrdIsoEωCNFA-1bsupp𝑜u+𝑜v-1seqωkV,fVxω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppkdomf+𝑜xxdomfω𝑜OrdIsoEωCNFA-1bsuppk𝑜ωCNFA-1bOrdIsoEωCNFA-1bsuppk+𝑜x-1domOrdIsoEωCNFA-1bsupp
13 1 2 3 4 5 6 7 8 9 10 11 12 cnfcom3clem AOngbAωbwOn1𝑜gb:b1-1 ontoω𝑜w