Metamath Proof Explorer


Theorem cnfcom3c

Description: Wrap the construction of cnfcom3 into an existential quantifier. For any _om C_ b , there is a bijection from b to some power of _om . Furthermore, this bijection iscanonical , which means that we can find a single function g which will give such bijections for every b less than some arbitrarily large bound A . (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Assertion cnfcom3c A On g b A ω b w On 1 𝑜 g b : b 1-1 onto ω 𝑜 w

Proof

Step Hyp Ref Expression
1 eqid dom ω CNF A = dom ω CNF A
2 eqid ω CNF A -1 b = ω CNF A -1 b
3 eqid OrdIso E ω CNF A -1 b supp = OrdIso E ω CNF A -1 b supp
4 eqid seq ω k V , z V ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k + 𝑜 z = seq ω k V , z V ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k + 𝑜 z
5 eqid seq ω k V , f V x ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k dom f + 𝑜 x x dom f ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k + 𝑜 x -1 = seq ω k V , f V x ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k dom f + 𝑜 x x dom f ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k + 𝑜 x -1
6 eqid ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k = ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k
7 eqid x ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k dom f + 𝑜 x x dom f ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k + 𝑜 x -1 = x ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k dom f + 𝑜 x x dom f ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k + 𝑜 x -1
8 eqid OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp = OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp
9 eqid u ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp , v ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp 𝑜 v + 𝑜 u = u ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp , v ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp 𝑜 v + 𝑜 u
10 eqid u ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp , v ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp 𝑜 u + 𝑜 v = u ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp , v ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp 𝑜 u + 𝑜 v
11 eqid u ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp , v ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp 𝑜 v + 𝑜 u u ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp , v ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp 𝑜 u + 𝑜 v -1 seq ω k V , f V x ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k dom f + 𝑜 x x dom f ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k + 𝑜 x -1 dom OrdIso E ω CNF A -1 b supp = u ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp , v ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp 𝑜 v + 𝑜 u u ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp , v ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp 𝑜 u + 𝑜 v -1 seq ω k V , f V x ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k dom f + 𝑜 x x dom f ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k + 𝑜 x -1 dom OrdIso E ω CNF A -1 b supp
12 eqid b ω 𝑜 A u ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp , v ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp 𝑜 v + 𝑜 u u ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp , v ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp 𝑜 u + 𝑜 v -1 seq ω k V , f V x ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k dom f + 𝑜 x x dom f ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k + 𝑜 x -1 dom OrdIso E ω CNF A -1 b supp = b ω 𝑜 A u ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp , v ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp 𝑜 v + 𝑜 u u ω CNF A -1 b OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp , v ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp ω 𝑜 OrdIso E ω CNF A -1 b supp dom OrdIso E ω CNF A -1 b supp 𝑜 u + 𝑜 v -1 seq ω k V , f V x ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k dom f + 𝑜 x x dom f ω 𝑜 OrdIso E ω CNF A -1 b supp k 𝑜 ω CNF A -1 b OrdIso E ω CNF A -1 b supp k + 𝑜 x -1 dom OrdIso E ω CNF A -1 b supp
13 1 2 3 4 5 6 7 8 9 10 11 12 cnfcom3clem A On g b A ω b w On 1 𝑜 g b : b 1-1 onto ω 𝑜 w