| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfcom.s |
|
| 2 |
|
cnfcom.a |
|
| 3 |
|
cnfcom.b |
|
| 4 |
|
cnfcom.f |
|
| 5 |
|
cnfcom.g |
|
| 6 |
|
cnfcom.h |
|
| 7 |
|
cnfcom.t |
|
| 8 |
|
cnfcom.m |
|
| 9 |
|
cnfcom.k |
|
| 10 |
|
cnfcom.w |
|
| 11 |
|
cnfcom3.1 |
|
| 12 |
|
cnfcom.x |
|
| 13 |
|
cnfcom.y |
|
| 14 |
|
cnfcom.n |
|
| 15 |
|
omelon |
|
| 16 |
|
suppssdm |
|
| 17 |
15
|
a1i |
|
| 18 |
1 17 2
|
cantnff1o |
|
| 19 |
|
f1ocnv |
|
| 20 |
|
f1of |
|
| 21 |
18 19 20
|
3syl |
|
| 22 |
21 3
|
ffvelcdmd |
|
| 23 |
4 22
|
eqeltrid |
|
| 24 |
1 17 2
|
cantnfs |
|
| 25 |
23 24
|
mpbid |
|
| 26 |
25
|
simpld |
|
| 27 |
16 26
|
fssdm |
|
| 28 |
|
ovex |
|
| 29 |
5
|
oion |
|
| 30 |
28 29
|
ax-mp |
|
| 31 |
30
|
elexi |
|
| 32 |
31
|
uniex |
|
| 33 |
32
|
sucid |
|
| 34 |
|
peano1 |
|
| 35 |
34
|
a1i |
|
| 36 |
11 35
|
sseldd |
|
| 37 |
1 2 3 4 5 6 7 8 9 10 36
|
cnfcom2lem |
|
| 38 |
33 37
|
eleqtrrid |
|
| 39 |
5
|
oif |
|
| 40 |
39
|
ffvelcdmi |
|
| 41 |
38 40
|
syl |
|
| 42 |
10 41
|
eqeltrid |
|
| 43 |
27 42
|
sseldd |
|
| 44 |
|
onelon |
|
| 45 |
2 43 44
|
syl2anc |
|
| 46 |
|
oecl |
|
| 47 |
15 45 46
|
sylancr |
|
| 48 |
26 43
|
ffvelcdmd |
|
| 49 |
|
nnon |
|
| 50 |
48 49
|
syl |
|
| 51 |
13 12
|
omf1o |
|
| 52 |
47 50 51
|
syl2anc |
|
| 53 |
26
|
ffnd |
|
| 54 |
|
0ex |
|
| 55 |
54
|
a1i |
|
| 56 |
|
elsuppfn |
|
| 57 |
53 2 55 56
|
syl3anc |
|
| 58 |
|
simpr |
|
| 59 |
57 58
|
biimtrdi |
|
| 60 |
42 59
|
mpd |
|
| 61 |
|
on0eln0 |
|
| 62 |
48 49 61
|
3syl |
|
| 63 |
60 62
|
mpbird |
|
| 64 |
1 2 3 4 5 6 7 8 9 10 11
|
cnfcom3lem |
|
| 65 |
|
ondif1 |
|
| 66 |
65
|
simprbi |
|
| 67 |
64 66
|
syl |
|
| 68 |
|
omabs |
|
| 69 |
48 63 45 67 68
|
syl22anc |
|
| 70 |
69
|
f1oeq3d |
|
| 71 |
52 70
|
mpbid |
|
| 72 |
1 2 3 4 5 6 7 8 9 10 36
|
cnfcom2 |
|
| 73 |
|
f1oco |
|
| 74 |
71 72 73
|
syl2anc |
|
| 75 |
|
f1oeq1 |
|
| 76 |
14 75
|
ax-mp |
|
| 77 |
74 76
|
sylibr |
|