Metamath Proof Explorer


Theorem omabs

Description: Ordinal multiplication is also absorbed by powers of _om . (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Assertion omabs AωABOnBA𝑜ω𝑜B=ω𝑜B

Proof

Step Hyp Ref Expression
1 eleq2 x=x
2 oveq2 x=ω𝑜x=ω𝑜
3 2 oveq2d x=A𝑜ω𝑜x=A𝑜ω𝑜
4 3 2 eqeq12d x=A𝑜ω𝑜x=ω𝑜xA𝑜ω𝑜=ω𝑜
5 1 4 imbi12d x=xA𝑜ω𝑜x=ω𝑜xA𝑜ω𝑜=ω𝑜
6 eleq2 x=yxy
7 oveq2 x=yω𝑜x=ω𝑜y
8 7 oveq2d x=yA𝑜ω𝑜x=A𝑜ω𝑜y
9 8 7 eqeq12d x=yA𝑜ω𝑜x=ω𝑜xA𝑜ω𝑜y=ω𝑜y
10 6 9 imbi12d x=yxA𝑜ω𝑜x=ω𝑜xyA𝑜ω𝑜y=ω𝑜y
11 eleq2 x=sucyxsucy
12 oveq2 x=sucyω𝑜x=ω𝑜sucy
13 12 oveq2d x=sucyA𝑜ω𝑜x=A𝑜ω𝑜sucy
14 13 12 eqeq12d x=sucyA𝑜ω𝑜x=ω𝑜xA𝑜ω𝑜sucy=ω𝑜sucy
15 11 14 imbi12d x=sucyxA𝑜ω𝑜x=ω𝑜xsucyA𝑜ω𝑜sucy=ω𝑜sucy
16 eleq2 x=BxB
17 oveq2 x=Bω𝑜x=ω𝑜B
18 17 oveq2d x=BA𝑜ω𝑜x=A𝑜ω𝑜B
19 18 17 eqeq12d x=BA𝑜ω𝑜x=ω𝑜xA𝑜ω𝑜B=ω𝑜B
20 16 19 imbi12d x=BxA𝑜ω𝑜x=ω𝑜xBA𝑜ω𝑜B=ω𝑜B
21 noel ¬
22 21 pm2.21i A𝑜ω𝑜=ω𝑜
23 22 a1i AωAωOnA𝑜ω𝑜=ω𝑜
24 simprl AωAωOnyOnωOn
25 simpll AωAωOnyOnAω
26 simplr AωAωOnyOnA
27 omabslem ωOnAωAA𝑜ω=ω
28 24 25 26 27 syl3anc AωAωOnyOnA𝑜ω=ω
29 28 adantr AωAωOnyOny=A𝑜ω=ω
30 suceq y=sucy=suc
31 df-1o 1𝑜=suc
32 30 31 eqtr4di y=sucy=1𝑜
33 32 oveq2d y=ω𝑜sucy=ω𝑜1𝑜
34 oe1 ωOnω𝑜1𝑜=ω
35 34 ad2antrl AωAωOnyOnω𝑜1𝑜=ω
36 33 35 sylan9eqr AωAωOnyOny=ω𝑜sucy=ω
37 36 oveq2d AωAωOnyOny=A𝑜ω𝑜sucy=A𝑜ω
38 29 37 36 3eqtr4d AωAωOnyOny=A𝑜ω𝑜sucy=ω𝑜sucy
39 38 ex AωAωOnyOny=A𝑜ω𝑜sucy=ω𝑜sucy
40 39 a1dd AωAωOnyOny=yA𝑜ω𝑜y=ω𝑜yA𝑜ω𝑜sucy=ω𝑜sucy
41 oveq1 A𝑜ω𝑜y=ω𝑜yA𝑜ω𝑜y𝑜ω=ω𝑜y𝑜ω
42 oesuc ωOnyOnω𝑜sucy=ω𝑜y𝑜ω
43 42 adantl AωAωOnyOnω𝑜sucy=ω𝑜y𝑜ω
44 43 oveq2d AωAωOnyOnA𝑜ω𝑜sucy=A𝑜ω𝑜y𝑜ω
45 nnon AωAOn
46 45 ad2antrr AωAωOnyOnAOn
47 oecl ωOnyOnω𝑜yOn
48 47 adantl AωAωOnyOnω𝑜yOn
49 omass AOnω𝑜yOnωOnA𝑜ω𝑜y𝑜ω=A𝑜ω𝑜y𝑜ω
50 46 48 24 49 syl3anc AωAωOnyOnA𝑜ω𝑜y𝑜ω=A𝑜ω𝑜y𝑜ω
51 44 50 eqtr4d AωAωOnyOnA𝑜ω𝑜sucy=A𝑜ω𝑜y𝑜ω
52 51 43 eqeq12d AωAωOnyOnA𝑜ω𝑜sucy=ω𝑜sucyA𝑜ω𝑜y𝑜ω=ω𝑜y𝑜ω
53 41 52 imbitrrid AωAωOnyOnA𝑜ω𝑜y=ω𝑜yA𝑜ω𝑜sucy=ω𝑜sucy
54 53 imim2d AωAωOnyOnyA𝑜ω𝑜y=ω𝑜yyA𝑜ω𝑜sucy=ω𝑜sucy
55 54 com23 AωAωOnyOnyyA𝑜ω𝑜y=ω𝑜yA𝑜ω𝑜sucy=ω𝑜sucy
56 simprr AωAωOnyOnyOn
57 on0eqel yOny=y
58 56 57 syl AωAωOnyOny=y
59 40 55 58 mpjaod AωAωOnyOnyA𝑜ω𝑜y=ω𝑜yA𝑜ω𝑜sucy=ω𝑜sucy
60 59 a1dd AωAωOnyOnyA𝑜ω𝑜y=ω𝑜ysucyA𝑜ω𝑜sucy=ω𝑜sucy
61 60 anassrs AωAωOnyOnyA𝑜ω𝑜y=ω𝑜ysucyA𝑜ω𝑜sucy=ω𝑜sucy
62 61 expcom yOnAωAωOnyA𝑜ω𝑜y=ω𝑜ysucyA𝑜ω𝑜sucy=ω𝑜sucy
63 45 ad3antrrr AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yAOn
64 simprl AωAωOnLimxωOn
65 simprr AωAωOnLimxLimx
66 vex xV
67 65 66 jctil AωAωOnLimxxVLimx
68 limelon xVLimxxOn
69 67 68 syl AωAωOnLimxxOn
70 oecl ωOnxOnω𝑜xOn
71 64 69 70 syl2anc AωAωOnLimxω𝑜xOn
72 71 adantr AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yω𝑜xOn
73 1onn 1𝑜ω
74 ondif2 ωOn2𝑜ωOn1𝑜ω
75 64 73 74 sylanblrc AωAωOnLimxωOn2𝑜
76 75 adantr AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yωOn2𝑜
77 67 adantr AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yxVLimx
78 oelimcl ωOn2𝑜xVLimxLimω𝑜x
79 76 77 78 syl2anc AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yLimω𝑜x
80 omlim AOnω𝑜xOnLimω𝑜xA𝑜ω𝑜x=zω𝑜xA𝑜z
81 63 72 79 80 syl12anc AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yA𝑜ω𝑜x=zω𝑜xA𝑜z
82 simplrl AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yωOn
83 oelim2 ωOnxVLimxω𝑜x=yx1𝑜ω𝑜y
84 82 77 83 syl2anc AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yω𝑜x=yx1𝑜ω𝑜y
85 84 eleq2d AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yzω𝑜xzyx1𝑜ω𝑜y
86 eliun zyx1𝑜ω𝑜yyx1𝑜zω𝑜y
87 85 86 bitrdi AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yzω𝑜xyx1𝑜zω𝑜y
88 69 adantr AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yxOn
89 anass yxyzω𝑜yyxyzω𝑜y
90 onelon xOnyxyOn
91 on0eln0 yOnyy
92 90 91 syl xOnyxyy
93 92 pm5.32da xOnyxyyxy
94 dif1o yx1𝑜yxy
95 93 94 bitr4di xOnyxyyx1𝑜
96 95 anbi1d xOnyxyzω𝑜yyx1𝑜zω𝑜y
97 89 96 bitr3id xOnyxyzω𝑜yyx1𝑜zω𝑜y
98 97 rexbidv2 xOnyxyzω𝑜yyx1𝑜zω𝑜y
99 88 98 syl AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yyxyzω𝑜yyx1𝑜zω𝑜y
100 87 99 bitr4d AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yzω𝑜xyxyzω𝑜y
101 r19.29 yxyA𝑜ω𝑜y=ω𝑜yyxyzω𝑜yyxyA𝑜ω𝑜y=ω𝑜yyzω𝑜y
102 id yA𝑜ω𝑜y=ω𝑜yyA𝑜ω𝑜y=ω𝑜y
103 102 imp yA𝑜ω𝑜y=ω𝑜yyA𝑜ω𝑜y=ω𝑜y
104 103 anim1i yA𝑜ω𝑜y=ω𝑜yyzω𝑜yA𝑜ω𝑜y=ω𝑜yzω𝑜y
105 104 anasss yA𝑜ω𝑜y=ω𝑜yyzω𝑜yA𝑜ω𝑜y=ω𝑜yzω𝑜y
106 71 ad2antrr AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yω𝑜xOn
107 eloni ω𝑜xOnOrdω𝑜x
108 106 107 syl AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yOrdω𝑜x
109 simprr AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yzω𝑜y
110 64 ad2antrr AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yωOn
111 69 ad2antrr AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yxOn
112 simplr AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yyx
113 111 112 90 syl2anc AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yyOn
114 110 113 47 syl2anc AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yω𝑜yOn
115 onelon ω𝑜yOnzω𝑜yzOn
116 114 109 115 syl2anc AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yzOn
117 45 ad2antrr AωAωOnLimxAOn
118 117 ad2antrr AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yAOn
119 simplr AωAωOnLimxA
120 119 ad2antrr AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yA
121 omord2 zOnω𝑜yOnAOnAzω𝑜yA𝑜zA𝑜ω𝑜y
122 116 114 118 120 121 syl31anc AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yzω𝑜yA𝑜zA𝑜ω𝑜y
123 109 122 mpbid AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yA𝑜zA𝑜ω𝑜y
124 simprl AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yA𝑜ω𝑜y=ω𝑜y
125 123 124 eleqtrd AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yA𝑜zω𝑜y
126 75 ad2antrr AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yωOn2𝑜
127 oeord yOnxOnωOn2𝑜yxω𝑜yω𝑜x
128 113 111 126 127 syl3anc AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yyxω𝑜yω𝑜x
129 112 128 mpbid AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yω𝑜yω𝑜x
130 ontr1 ω𝑜xOnA𝑜zω𝑜yω𝑜yω𝑜xA𝑜zω𝑜x
131 106 130 syl AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yA𝑜zω𝑜yω𝑜yω𝑜xA𝑜zω𝑜x
132 125 129 131 mp2and AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yA𝑜zω𝑜x
133 ordelss Ordω𝑜xA𝑜zω𝑜xA𝑜zω𝑜x
134 108 132 133 syl2anc AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yA𝑜zω𝑜x
135 134 ex AωAωOnLimxyxA𝑜ω𝑜y=ω𝑜yzω𝑜yA𝑜zω𝑜x
136 105 135 syl5 AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yyzω𝑜yA𝑜zω𝑜x
137 136 rexlimdva AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yyzω𝑜yA𝑜zω𝑜x
138 101 137 syl5 AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yyxyzω𝑜yA𝑜zω𝑜x
139 138 expdimp AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yyxyzω𝑜yA𝑜zω𝑜x
140 100 139 sylbid AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yzω𝑜xA𝑜zω𝑜x
141 140 ralrimiv AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yzω𝑜xA𝑜zω𝑜x
142 iunss zω𝑜xA𝑜zω𝑜xzω𝑜xA𝑜zω𝑜x
143 141 142 sylibr AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yzω𝑜xA𝑜zω𝑜x
144 81 143 eqsstrd AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yA𝑜ω𝑜xω𝑜x
145 simpllr AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yA
146 omword2 ω𝑜xOnAOnAω𝑜xA𝑜ω𝑜x
147 72 63 145 146 syl21anc AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yω𝑜xA𝑜ω𝑜x
148 144 147 eqssd AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yA𝑜ω𝑜x=ω𝑜x
149 148 ex AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yA𝑜ω𝑜x=ω𝑜x
150 149 anassrs AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yA𝑜ω𝑜x=ω𝑜x
151 150 a1dd AωAωOnLimxyxyA𝑜ω𝑜y=ω𝑜yxA𝑜ω𝑜x=ω𝑜x
152 151 expcom LimxAωAωOnyxyA𝑜ω𝑜y=ω𝑜yxA𝑜ω𝑜x=ω𝑜x
153 5 10 15 20 23 62 152 tfinds3 BOnAωAωOnBA𝑜ω𝑜B=ω𝑜B
154 153 com12 AωAωOnBOnBA𝑜ω𝑜B=ω𝑜B
155 154 adantrr AωAωOnBOnBOnBA𝑜ω𝑜B=ω𝑜B
156 155 imp32 AωAωOnBOnBOnBA𝑜ω𝑜B=ω𝑜B
157 156 an32s AωABOnBωOnBOnA𝑜ω𝑜B=ω𝑜B
158 nnm0 AωA𝑜=
159 158 ad3antrrr AωABOnB¬ωOnBOnA𝑜=
160 fnoe 𝑜FnOn×On
161 fndm 𝑜FnOn×Ondom𝑜=On×On
162 160 161 ax-mp dom𝑜=On×On
163 162 ndmov ¬ωOnBOnω𝑜B=
164 163 adantl AωABOnB¬ωOnBOnω𝑜B=
165 164 oveq2d AωABOnB¬ωOnBOnA𝑜ω𝑜B=A𝑜
166 159 165 164 3eqtr4d AωABOnB¬ωOnBOnA𝑜ω𝑜B=ω𝑜B
167 157 166 pm2.61dan AωABOnBA𝑜ω𝑜B=ω𝑜B