Metamath Proof Explorer


Theorem cnfcom2

Description: Any nonzero ordinal B is equinumerous to the leading term of its Cantor normal form. (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019)

Ref Expression
Hypotheses cnfcom.s S=domωCNFA
cnfcom.a φAOn
cnfcom.b φBω𝑜A
cnfcom.f F=ωCNFA-1B
cnfcom.g G=OrdIsoEFsupp
cnfcom.h H=seqωkV,zVM+𝑜z
cnfcom.t T=seqωkV,fVK
cnfcom.m M=ω𝑜Gk𝑜FGk
cnfcom.k K=xMdomf+𝑜xxdomfM+𝑜x-1
cnfcom.w W=GdomG
cnfcom2.1 φB
Assertion cnfcom2 φTdomG:B1-1 ontoω𝑜W𝑜FW

Proof

Step Hyp Ref Expression
1 cnfcom.s S=domωCNFA
2 cnfcom.a φAOn
3 cnfcom.b φBω𝑜A
4 cnfcom.f F=ωCNFA-1B
5 cnfcom.g G=OrdIsoEFsupp
6 cnfcom.h H=seqωkV,zVM+𝑜z
7 cnfcom.t T=seqωkV,fVK
8 cnfcom.m M=ω𝑜Gk𝑜FGk
9 cnfcom.k K=xMdomf+𝑜xxdomfM+𝑜x-1
10 cnfcom.w W=GdomG
11 cnfcom2.1 φB
12 ovex FsuppV
13 5 oion FsuppVdomGOn
14 12 13 ax-mp domGOn
15 14 elexi domGV
16 15 uniex domGV
17 16 sucid domGsucdomG
18 1 2 3 4 5 6 7 8 9 10 11 cnfcom2lem φdomG=sucdomG
19 17 18 eleqtrrid φdomGdomG
20 1 2 3 4 5 6 7 8 9 19 cnfcom φTsucdomG:HsucdomG1-1 ontoω𝑜GdomG𝑜FGdomG
21 10 oveq2i ω𝑜W=ω𝑜GdomG
22 10 fveq2i FW=FGdomG
23 21 22 oveq12i ω𝑜W𝑜FW=ω𝑜GdomG𝑜FGdomG
24 f1oeq3 ω𝑜W𝑜FW=ω𝑜GdomG𝑜FGdomGTsucdomG:HsucdomG1-1 ontoω𝑜W𝑜FWTsucdomG:HsucdomG1-1 ontoω𝑜GdomG𝑜FGdomG
25 23 24 ax-mp TsucdomG:HsucdomG1-1 ontoω𝑜W𝑜FWTsucdomG:HsucdomG1-1 ontoω𝑜GdomG𝑜FGdomG
26 20 25 sylibr φTsucdomG:HsucdomG1-1 ontoω𝑜W𝑜FW
27 18 fveq2d φTdomG=TsucdomG
28 27 f1oeq1d φTdomG:HsucdomG1-1 ontoω𝑜W𝑜FWTsucdomG:HsucdomG1-1 ontoω𝑜W𝑜FW
29 26 28 mpbird φTdomG:HsucdomG1-1 ontoω𝑜W𝑜FW
30 omelon ωOn
31 30 a1i φωOn
32 1 31 2 cantnff1o φωCNFA:S1-1 ontoω𝑜A
33 f1ocnv ωCNFA:S1-1 ontoω𝑜AωCNFA-1:ω𝑜A1-1 ontoS
34 f1of ωCNFA-1:ω𝑜A1-1 ontoSωCNFA-1:ω𝑜AS
35 32 33 34 3syl φωCNFA-1:ω𝑜AS
36 35 3 ffvelcdmd φωCNFA-1BS
37 4 36 eqeltrid φFS
38 8 oveq1i M+𝑜z=ω𝑜Gk𝑜FGk+𝑜z
39 38 a1i kVzVM+𝑜z=ω𝑜Gk𝑜FGk+𝑜z
40 39 mpoeq3ia kV,zVM+𝑜z=kV,zVω𝑜Gk𝑜FGk+𝑜z
41 eqid =
42 seqomeq12 kV,zVM+𝑜z=kV,zVω𝑜Gk𝑜FGk+𝑜z=seqωkV,zVM+𝑜z=seqωkV,zVω𝑜Gk𝑜FGk+𝑜z
43 40 41 42 mp2an seqωkV,zVM+𝑜z=seqωkV,zVω𝑜Gk𝑜FGk+𝑜z
44 6 43 eqtri H=seqωkV,zVω𝑜Gk𝑜FGk+𝑜z
45 1 31 2 5 37 44 cantnfval φωCNFAF=HdomG
46 4 fveq2i ωCNFAF=ωCNFAωCNFA-1B
47 45 46 eqtr3di φHdomG=ωCNFAωCNFA-1B
48 18 fveq2d φHdomG=HsucdomG
49 f1ocnvfv2 ωCNFA:S1-1 ontoω𝑜ABω𝑜AωCNFAωCNFA-1B=B
50 32 3 49 syl2anc φωCNFAωCNFA-1B=B
51 47 48 50 3eqtr3d φHsucdomG=B
52 51 f1oeq2d φTdomG:HsucdomG1-1 ontoω𝑜W𝑜FWTdomG:B1-1 ontoω𝑜W𝑜FW
53 29 52 mpbid φTdomG:B1-1 ontoω𝑜W𝑜FW