Metamath Proof Explorer


Theorem cnfcom2

Description: Any nonzero ordinal B is equinumerous to the leading term of its Cantor normal form. (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019)

Ref Expression
Hypotheses cnfcom.s S = dom ω CNF A
cnfcom.a φ A On
cnfcom.b φ B ω 𝑜 A
cnfcom.f F = ω CNF A -1 B
cnfcom.g G = OrdIso E F supp
cnfcom.h H = seq ω k V , z V M + 𝑜 z
cnfcom.t T = seq ω k V , f V K
cnfcom.m M = ω 𝑜 G k 𝑜 F G k
cnfcom.k K = x M dom f + 𝑜 x x dom f M + 𝑜 x -1
cnfcom.w W = G dom G
cnfcom2.1 φ B
Assertion cnfcom2 φ T dom G : B 1-1 onto ω 𝑜 W 𝑜 F W

Proof

Step Hyp Ref Expression
1 cnfcom.s S = dom ω CNF A
2 cnfcom.a φ A On
3 cnfcom.b φ B ω 𝑜 A
4 cnfcom.f F = ω CNF A -1 B
5 cnfcom.g G = OrdIso E F supp
6 cnfcom.h H = seq ω k V , z V M + 𝑜 z
7 cnfcom.t T = seq ω k V , f V K
8 cnfcom.m M = ω 𝑜 G k 𝑜 F G k
9 cnfcom.k K = x M dom f + 𝑜 x x dom f M + 𝑜 x -1
10 cnfcom.w W = G dom G
11 cnfcom2.1 φ B
12 ovex F supp V
13 5 oion F supp V dom G On
14 12 13 ax-mp dom G On
15 14 elexi dom G V
16 15 uniex dom G V
17 16 sucid dom G suc dom G
18 1 2 3 4 5 6 7 8 9 10 11 cnfcom2lem φ dom G = suc dom G
19 17 18 eleqtrrid φ dom G dom G
20 1 2 3 4 5 6 7 8 9 19 cnfcom φ T suc dom G : H suc dom G 1-1 onto ω 𝑜 G dom G 𝑜 F G dom G
21 10 oveq2i ω 𝑜 W = ω 𝑜 G dom G
22 10 fveq2i F W = F G dom G
23 21 22 oveq12i ω 𝑜 W 𝑜 F W = ω 𝑜 G dom G 𝑜 F G dom G
24 f1oeq3 ω 𝑜 W 𝑜 F W = ω 𝑜 G dom G 𝑜 F G dom G T suc dom G : H suc dom G 1-1 onto ω 𝑜 W 𝑜 F W T suc dom G : H suc dom G 1-1 onto ω 𝑜 G dom G 𝑜 F G dom G
25 23 24 ax-mp T suc dom G : H suc dom G 1-1 onto ω 𝑜 W 𝑜 F W T suc dom G : H suc dom G 1-1 onto ω 𝑜 G dom G 𝑜 F G dom G
26 20 25 sylibr φ T suc dom G : H suc dom G 1-1 onto ω 𝑜 W 𝑜 F W
27 18 fveq2d φ T dom G = T suc dom G
28 f1oeq1 T dom G = T suc dom G T dom G : H suc dom G 1-1 onto ω 𝑜 W 𝑜 F W T suc dom G : H suc dom G 1-1 onto ω 𝑜 W 𝑜 F W
29 27 28 syl φ T dom G : H suc dom G 1-1 onto ω 𝑜 W 𝑜 F W T suc dom G : H suc dom G 1-1 onto ω 𝑜 W 𝑜 F W
30 26 29 mpbird φ T dom G : H suc dom G 1-1 onto ω 𝑜 W 𝑜 F W
31 4 fveq2i ω CNF A F = ω CNF A ω CNF A -1 B
32 omelon ω On
33 32 a1i φ ω On
34 1 33 2 cantnff1o φ ω CNF A : S 1-1 onto ω 𝑜 A
35 f1ocnv ω CNF A : S 1-1 onto ω 𝑜 A ω CNF A -1 : ω 𝑜 A 1-1 onto S
36 f1of ω CNF A -1 : ω 𝑜 A 1-1 onto S ω CNF A -1 : ω 𝑜 A S
37 34 35 36 3syl φ ω CNF A -1 : ω 𝑜 A S
38 37 3 ffvelrnd φ ω CNF A -1 B S
39 4 38 eqeltrid φ F S
40 8 oveq1i M + 𝑜 z = ω 𝑜 G k 𝑜 F G k + 𝑜 z
41 40 a1i k V z V M + 𝑜 z = ω 𝑜 G k 𝑜 F G k + 𝑜 z
42 41 mpoeq3ia k V , z V M + 𝑜 z = k V , z V ω 𝑜 G k 𝑜 F G k + 𝑜 z
43 eqid =
44 seqomeq12 k V , z V M + 𝑜 z = k V , z V ω 𝑜 G k 𝑜 F G k + 𝑜 z = seq ω k V , z V M + 𝑜 z = seq ω k V , z V ω 𝑜 G k 𝑜 F G k + 𝑜 z
45 42 43 44 mp2an seq ω k V , z V M + 𝑜 z = seq ω k V , z V ω 𝑜 G k 𝑜 F G k + 𝑜 z
46 6 45 eqtri H = seq ω k V , z V ω 𝑜 G k 𝑜 F G k + 𝑜 z
47 1 33 2 5 39 46 cantnfval φ ω CNF A F = H dom G
48 31 47 syl5reqr φ H dom G = ω CNF A ω CNF A -1 B
49 18 fveq2d φ H dom G = H suc dom G
50 f1ocnvfv2 ω CNF A : S 1-1 onto ω 𝑜 A B ω 𝑜 A ω CNF A ω CNF A -1 B = B
51 34 3 50 syl2anc φ ω CNF A ω CNF A -1 B = B
52 48 49 51 3eqtr3d φ H suc dom G = B
53 52 f1oeq2d φ T dom G : H suc dom G 1-1 onto ω 𝑜 W 𝑜 F W T dom G : B 1-1 onto ω 𝑜 W 𝑜 F W
54 30 53 mpbid φ T dom G : B 1-1 onto ω 𝑜 W 𝑜 F W