Description: Any nonzero ordinal B is equinumerous to the leading term of its Cantor normal form. (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnfcom.s | |
|
cnfcom.a | |
||
cnfcom.b | |
||
cnfcom.f | |
||
cnfcom.g | |
||
cnfcom.h | |
||
cnfcom.t | |
||
cnfcom.m | |
||
cnfcom.k | |
||
cnfcom.w | |
||
cnfcom2.1 | |
||
Assertion | cnfcom2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfcom.s | |
|
2 | cnfcom.a | |
|
3 | cnfcom.b | |
|
4 | cnfcom.f | |
|
5 | cnfcom.g | |
|
6 | cnfcom.h | |
|
7 | cnfcom.t | |
|
8 | cnfcom.m | |
|
9 | cnfcom.k | |
|
10 | cnfcom.w | |
|
11 | cnfcom2.1 | |
|
12 | ovex | |
|
13 | 5 | oion | |
14 | 12 13 | ax-mp | |
15 | 14 | elexi | |
16 | 15 | uniex | |
17 | 16 | sucid | |
18 | 1 2 3 4 5 6 7 8 9 10 11 | cnfcom2lem | |
19 | 17 18 | eleqtrrid | |
20 | 1 2 3 4 5 6 7 8 9 19 | cnfcom | |
21 | 10 | oveq2i | |
22 | 10 | fveq2i | |
23 | 21 22 | oveq12i | |
24 | f1oeq3 | |
|
25 | 23 24 | ax-mp | |
26 | 20 25 | sylibr | |
27 | 18 | fveq2d | |
28 | 27 | f1oeq1d | |
29 | 26 28 | mpbird | |
30 | omelon | |
|
31 | 30 | a1i | |
32 | 1 31 2 | cantnff1o | |
33 | f1ocnv | |
|
34 | f1of | |
|
35 | 32 33 34 | 3syl | |
36 | 35 3 | ffvelcdmd | |
37 | 4 36 | eqeltrid | |
38 | 8 | oveq1i | |
39 | 38 | a1i | |
40 | 39 | mpoeq3ia | |
41 | eqid | |
|
42 | seqomeq12 | |
|
43 | 40 41 42 | mp2an | |
44 | 6 43 | eqtri | |
45 | 1 31 2 5 37 44 | cantnfval | |
46 | 4 | fveq2i | |
47 | 45 46 | eqtr3di | |
48 | 18 | fveq2d | |
49 | f1ocnvfv2 | |
|
50 | 32 3 49 | syl2anc | |
51 | 47 48 50 | 3eqtr3d | |
52 | 51 | f1oeq2d | |
53 | 29 52 | mpbid | |