| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfcom.s |
|
| 2 |
|
cnfcom.a |
|
| 3 |
|
cnfcom.b |
|
| 4 |
|
cnfcom.f |
|
| 5 |
|
cnfcom.g |
|
| 6 |
|
cnfcom.h |
|
| 7 |
|
cnfcom.t |
|
| 8 |
|
cnfcom.m |
|
| 9 |
|
cnfcom.k |
|
| 10 |
|
cnfcom.w |
|
| 11 |
|
cnfcom2.1 |
|
| 12 |
|
n0i |
|
| 13 |
11 12
|
syl |
|
| 14 |
|
omelon |
|
| 15 |
14
|
a1i |
|
| 16 |
1 15 2
|
cantnff1o |
|
| 17 |
|
f1ocnv |
|
| 18 |
|
f1of |
|
| 19 |
16 17 18
|
3syl |
|
| 20 |
19 3
|
ffvelcdmd |
|
| 21 |
4 20
|
eqeltrid |
|
| 22 |
1 15 2
|
cantnfs |
|
| 23 |
21 22
|
mpbid |
|
| 24 |
23
|
simpld |
|
| 25 |
24
|
adantr |
|
| 26 |
25
|
feqmptd |
|
| 27 |
|
dif0 |
|
| 28 |
27
|
eleq2i |
|
| 29 |
|
simpr |
|
| 30 |
|
ovexd |
|
| 31 |
1 15 2 5 21
|
cantnfcl |
|
| 32 |
31
|
simpld |
|
| 33 |
5
|
oien |
|
| 34 |
30 32 33
|
syl2anc |
|
| 35 |
34
|
adantr |
|
| 36 |
29 35
|
eqbrtrrd |
|
| 37 |
36
|
ensymd |
|
| 38 |
|
en0 |
|
| 39 |
37 38
|
sylib |
|
| 40 |
|
ss0b |
|
| 41 |
39 40
|
sylibr |
|
| 42 |
2
|
adantr |
|
| 43 |
|
0ex |
|
| 44 |
43
|
a1i |
|
| 45 |
25 41 42 44
|
suppssr |
|
| 46 |
28 45
|
sylan2br |
|
| 47 |
46
|
mpteq2dva |
|
| 48 |
26 47
|
eqtrd |
|
| 49 |
|
fconstmpt |
|
| 50 |
48 49
|
eqtr4di |
|
| 51 |
50
|
fveq2d |
|
| 52 |
4
|
fveq2i |
|
| 53 |
|
f1ocnvfv2 |
|
| 54 |
16 3 53
|
syl2anc |
|
| 55 |
52 54
|
eqtrid |
|
| 56 |
55
|
adantr |
|
| 57 |
|
peano1 |
|
| 58 |
57
|
a1i |
|
| 59 |
1 15 2 58
|
cantnf0 |
|
| 60 |
59
|
adantr |
|
| 61 |
51 56 60
|
3eqtr3d |
|
| 62 |
13 61
|
mtand |
|
| 63 |
|
nnlim |
|
| 64 |
31 63
|
simpl2im |
|
| 65 |
|
ioran |
|
| 66 |
62 64 65
|
sylanbrc |
|
| 67 |
5
|
oicl |
|
| 68 |
|
unizlim |
|
| 69 |
67 68
|
ax-mp |
|
| 70 |
66 69
|
sylnibr |
|
| 71 |
|
orduniorsuc |
|
| 72 |
67 71
|
mp1i |
|
| 73 |
72
|
ord |
|
| 74 |
70 73
|
mpd |
|