| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfcom.s |
|
| 2 |
|
cnfcom.a |
|
| 3 |
|
cnfcom.b |
|
| 4 |
|
cnfcom.f |
|
| 5 |
|
cnfcom.g |
|
| 6 |
|
cnfcom.h |
|
| 7 |
|
cnfcom.t |
|
| 8 |
|
cnfcom.m |
|
| 9 |
|
cnfcom.k |
|
| 10 |
|
cnfcom.w |
|
| 11 |
|
cnfcom3.1 |
|
| 12 |
|
suppssdm |
|
| 13 |
|
omelon |
|
| 14 |
13
|
a1i |
|
| 15 |
1 14 2
|
cantnff1o |
|
| 16 |
|
f1ocnv |
|
| 17 |
|
f1of |
|
| 18 |
15 16 17
|
3syl |
|
| 19 |
18 3
|
ffvelcdmd |
|
| 20 |
4 19
|
eqeltrid |
|
| 21 |
1 14 2
|
cantnfs |
|
| 22 |
20 21
|
mpbid |
|
| 23 |
22
|
simpld |
|
| 24 |
12 23
|
fssdm |
|
| 25 |
|
ovex |
|
| 26 |
5
|
oion |
|
| 27 |
25 26
|
ax-mp |
|
| 28 |
27
|
elexi |
|
| 29 |
28
|
uniex |
|
| 30 |
29
|
sucid |
|
| 31 |
|
peano1 |
|
| 32 |
31
|
a1i |
|
| 33 |
11 32
|
sseldd |
|
| 34 |
1 2 3 4 5 6 7 8 9 10 33
|
cnfcom2lem |
|
| 35 |
30 34
|
eleqtrrid |
|
| 36 |
5
|
oif |
|
| 37 |
36
|
ffvelcdmi |
|
| 38 |
35 37
|
syl |
|
| 39 |
24 38
|
sseldd |
|
| 40 |
|
onelon |
|
| 41 |
2 39 40
|
syl2anc |
|
| 42 |
10 41
|
eqeltrid |
|
| 43 |
|
oecl |
|
| 44 |
13 2 43
|
sylancr |
|
| 45 |
|
onelon |
|
| 46 |
44 3 45
|
syl2anc |
|
| 47 |
|
ontri1 |
|
| 48 |
13 46 47
|
sylancr |
|
| 49 |
11 48
|
mpbid |
|
| 50 |
4
|
fveq2i |
|
| 51 |
|
f1ocnvfv2 |
|
| 52 |
15 3 51
|
syl2anc |
|
| 53 |
50 52
|
eqtrid |
|
| 54 |
53
|
adantr |
|
| 55 |
13
|
a1i |
|
| 56 |
2
|
adantr |
|
| 57 |
20
|
adantr |
|
| 58 |
31
|
a1i |
|
| 59 |
|
1on |
|
| 60 |
59
|
a1i |
|
| 61 |
|
ovexd |
|
| 62 |
1 14 2 5 20
|
cantnfcl |
|
| 63 |
62
|
simpld |
|
| 64 |
5
|
oiiso |
|
| 65 |
61 63 64
|
syl2anc |
|
| 66 |
65
|
ad2antrr |
|
| 67 |
|
isof1o |
|
| 68 |
66 67
|
syl |
|
| 69 |
|
f1ocnv |
|
| 70 |
|
f1of |
|
| 71 |
68 69 70
|
3syl |
|
| 72 |
|
ffvelcdm |
|
| 73 |
71 72
|
sylancom |
|
| 74 |
|
elssuni |
|
| 75 |
73 74
|
syl |
|
| 76 |
|
onelon |
|
| 77 |
27 73 76
|
sylancr |
|
| 78 |
|
onuni |
|
| 79 |
27 78
|
ax-mp |
|
| 80 |
|
ontri1 |
|
| 81 |
77 79 80
|
sylancl |
|
| 82 |
75 81
|
mpbid |
|
| 83 |
35
|
ad2antrr |
|
| 84 |
|
isorel |
|
| 85 |
66 83 73 84
|
syl12anc |
|
| 86 |
|
fvex |
|
| 87 |
86
|
epeli |
|
| 88 |
10
|
breq1i |
|
| 89 |
|
fvex |
|
| 90 |
89
|
epeli |
|
| 91 |
88 90
|
bitr3i |
|
| 92 |
85 87 91
|
3bitr3g |
|
| 93 |
|
simplr |
|
| 94 |
|
f1ocnvfv2 |
|
| 95 |
68 94
|
sylancom |
|
| 96 |
93 95
|
eleq12d |
|
| 97 |
92 96
|
bitrd |
|
| 98 |
82 97
|
mtbid |
|
| 99 |
|
onss |
|
| 100 |
2 99
|
syl |
|
| 101 |
24 100
|
sstrd |
|
| 102 |
101
|
adantr |
|
| 103 |
102
|
sselda |
|
| 104 |
|
on0eqel |
|
| 105 |
103 104
|
syl |
|
| 106 |
105
|
ord |
|
| 107 |
98 106
|
mt3d |
|
| 108 |
|
el1o |
|
| 109 |
107 108
|
sylibr |
|
| 110 |
109
|
ex |
|
| 111 |
110
|
ssrdv |
|
| 112 |
1 55 56 57 58 60 111
|
cantnflt2 |
|
| 113 |
|
oe1 |
|
| 114 |
13 113
|
ax-mp |
|
| 115 |
112 114
|
eleqtrdi |
|
| 116 |
54 115
|
eqeltrrd |
|
| 117 |
116
|
ex |
|
| 118 |
117
|
necon3bd |
|
| 119 |
49 118
|
mpd |
|
| 120 |
|
dif1o |
|
| 121 |
42 119 120
|
sylanbrc |
|