Metamath Proof Explorer


Theorem cnfldstr

Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015) (Revised by Thierry Arnoux, 17-Dec-2017)

Ref Expression
Assertion cnfldstr fld Struct 1 13

Proof

Step Hyp Ref Expression
1 df-cnfld fld = Base ndx + ndx + ndx × * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
2 eqid Base ndx + ndx + ndx × * ndx * = Base ndx + ndx + ndx × * ndx *
3 2 srngstr Base ndx + ndx + ndx × * ndx * Struct 1 4
4 9nn 9
5 tsetndx TopSet ndx = 9
6 9lt10 9 < 10
7 10nn 10
8 plendx ndx = 10
9 1nn0 1 0
10 0nn0 0 0
11 2nn 2
12 2pos 0 < 2
13 9 10 11 12 declt 10 < 12
14 9 11 decnncl 12
15 dsndx dist ndx = 12
16 4 5 6 7 8 13 14 15 strle3 TopSet ndx MetOpen abs ndx dist ndx abs Struct 9 12
17 3nn 3
18 9 17 decnncl 13
19 unifndx UnifSet ndx = 13
20 18 19 strle1 UnifSet ndx metUnif abs Struct 13 13
21 2nn0 2 0
22 2lt3 2 < 3
23 9 21 17 22 declt 12 < 13
24 16 20 23 strleun TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs Struct 9 13
25 4lt9 4 < 9
26 3 24 25 strleun Base ndx + ndx + ndx × * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs Struct 1 13
27 1 26 eqbrtri fld Struct 1 13