Metamath Proof Explorer


Theorem cnmptc

Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmptid.j φJTopOnX
cnmptc.k φKTopOnY
cnmptc.p φPY
Assertion cnmptc φxXPJCnK

Proof

Step Hyp Ref Expression
1 cnmptid.j φJTopOnX
2 cnmptc.k φKTopOnY
3 cnmptc.p φPY
4 fconstmpt X×P=xXP
5 cnconst2 JTopOnXKTopOnYPYX×PJCnK
6 1 2 3 5 syl3anc φX×PJCnK
7 4 6 eqeltrrid φxXPJCnK