Metamath Proof Explorer


Theorem cnmsgnbas

Description: The base set of the sign subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypothesis cnmsgngrp.u U=mulGrpfld𝑠11
Assertion cnmsgnbas 11=BaseU

Proof

Step Hyp Ref Expression
1 cnmsgngrp.u U=mulGrpfld𝑠11
2 ax-1cn 1
3 neg1cn 1
4 prssi 1111
5 2 3 4 mp2an 11
6 eqid mulGrpfld=mulGrpfld
7 cnfldbas =Basefld
8 6 7 mgpbas =BasemulGrpfld
9 1 8 ressbas2 1111=BaseU
10 5 9 ax-mp 11=BaseU