Metamath Proof Explorer


Theorem cnncvsmulassdemo

Description: Derive the associative law for complex number multiplication mulass interpreted as scalar multiplication to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by AV, 9-Oct-2021) (Proof modification is discouraged.)

Ref Expression
Assertion cnncvsmulassdemo A B C A B C = A B C

Proof

Step Hyp Ref Expression
1 eqid ringLMod fld = ringLMod fld
2 1 cncvs ringLMod fld ℂVec
3 id ringLMod fld ℂVec ringLMod fld ℂVec
4 3 cvsclm ringLMod fld ℂVec ringLMod fld CMod
5 2 4 ax-mp ringLMod fld CMod
6 1 cnrbas Base ringLMod fld =
7 6 eqcomi = Base ringLMod fld
8 cnfldex fld V
9 rlmsca fld V fld = Scalar ringLMod fld
10 8 9 ax-mp fld = Scalar ringLMod fld
11 cnfldmul × = fld
12 rlmvsca fld = ringLMod fld
13 11 12 eqtri × = ringLMod fld
14 cnfldbas = Base fld
15 14 eqcomi Base fld =
16 15 eqcomi = Base fld
17 7 10 13 16 clmvsass ringLMod fld CMod A B C A B C = A B C
18 5 17 mpan A B C A B C = A B C