| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( ringLMod ‘ ℂfld )  =  ( ringLMod ‘ ℂfld ) | 
						
							| 2 | 1 | cncvs | ⊢ ( ringLMod ‘ ℂfld )  ∈  ℂVec | 
						
							| 3 |  | id | ⊢ ( ( ringLMod ‘ ℂfld )  ∈  ℂVec  →  ( ringLMod ‘ ℂfld )  ∈  ℂVec ) | 
						
							| 4 | 3 | cvsclm | ⊢ ( ( ringLMod ‘ ℂfld )  ∈  ℂVec  →  ( ringLMod ‘ ℂfld )  ∈  ℂMod ) | 
						
							| 5 | 2 4 | ax-mp | ⊢ ( ringLMod ‘ ℂfld )  ∈  ℂMod | 
						
							| 6 | 1 | cnrbas | ⊢ ( Base ‘ ( ringLMod ‘ ℂfld ) )  =  ℂ | 
						
							| 7 | 6 | eqcomi | ⊢ ℂ  =  ( Base ‘ ( ringLMod ‘ ℂfld ) ) | 
						
							| 8 |  | cnfldex | ⊢ ℂfld  ∈  V | 
						
							| 9 |  | rlmsca | ⊢ ( ℂfld  ∈  V  →  ℂfld  =  ( Scalar ‘ ( ringLMod ‘ ℂfld ) ) ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ℂfld  =  ( Scalar ‘ ( ringLMod ‘ ℂfld ) ) | 
						
							| 11 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 12 |  | rlmvsca | ⊢ ( .r ‘ ℂfld )  =  (  ·𝑠  ‘ ( ringLMod ‘ ℂfld ) ) | 
						
							| 13 | 11 12 | eqtri | ⊢  ·   =  (  ·𝑠  ‘ ( ringLMod ‘ ℂfld ) ) | 
						
							| 14 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 15 | 14 | eqcomi | ⊢ ( Base ‘ ℂfld )  =  ℂ | 
						
							| 16 | 15 | eqcomi | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 17 | 7 10 13 16 | clmvsass | ⊢ ( ( ( ringLMod ‘ ℂfld )  ∈  ℂMod  ∧  ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ ) )  →  ( ( 𝐴  ·  𝐵 )  ·  𝐶 )  =  ( 𝐴  ·  ( 𝐵  ·  𝐶 ) ) ) | 
						
							| 18 | 5 17 | mpan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  ·  𝐵 )  ·  𝐶 )  =  ( 𝐴  ·  ( 𝐵  ·  𝐶 ) ) ) |