Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( ringLMod ‘ ℂfld ) = ( ringLMod ‘ ℂfld ) |
2 |
1
|
cncvs |
⊢ ( ringLMod ‘ ℂfld ) ∈ ℂVec |
3 |
|
id |
⊢ ( ( ringLMod ‘ ℂfld ) ∈ ℂVec → ( ringLMod ‘ ℂfld ) ∈ ℂVec ) |
4 |
3
|
cvsclm |
⊢ ( ( ringLMod ‘ ℂfld ) ∈ ℂVec → ( ringLMod ‘ ℂfld ) ∈ ℂMod ) |
5 |
2 4
|
ax-mp |
⊢ ( ringLMod ‘ ℂfld ) ∈ ℂMod |
6 |
1
|
cnrbas |
⊢ ( Base ‘ ( ringLMod ‘ ℂfld ) ) = ℂ |
7 |
6
|
eqcomi |
⊢ ℂ = ( Base ‘ ( ringLMod ‘ ℂfld ) ) |
8 |
|
cnfldex |
⊢ ℂfld ∈ V |
9 |
|
rlmsca |
⊢ ( ℂfld ∈ V → ℂfld = ( Scalar ‘ ( ringLMod ‘ ℂfld ) ) ) |
10 |
8 9
|
ax-mp |
⊢ ℂfld = ( Scalar ‘ ( ringLMod ‘ ℂfld ) ) |
11 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
12 |
|
rlmvsca |
⊢ ( .r ‘ ℂfld ) = ( ·𝑠 ‘ ( ringLMod ‘ ℂfld ) ) |
13 |
11 12
|
eqtri |
⊢ · = ( ·𝑠 ‘ ( ringLMod ‘ ℂfld ) ) |
14 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
15 |
14
|
eqcomi |
⊢ ( Base ‘ ℂfld ) = ℂ |
16 |
15
|
eqcomi |
⊢ ℂ = ( Base ‘ ℂfld ) |
17 |
7 10 13 16
|
clmvsass |
⊢ ( ( ( ringLMod ‘ ℂfld ) ∈ ℂMod ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |
18 |
5 17
|
mpan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |