| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( ringLMod ‘ ℂfld ) = ( ringLMod ‘ ℂfld ) |
| 2 |
1
|
cncvs |
⊢ ( ringLMod ‘ ℂfld ) ∈ ℂVec |
| 3 |
|
id |
⊢ ( ( ringLMod ‘ ℂfld ) ∈ ℂVec → ( ringLMod ‘ ℂfld ) ∈ ℂVec ) |
| 4 |
3
|
cvsclm |
⊢ ( ( ringLMod ‘ ℂfld ) ∈ ℂVec → ( ringLMod ‘ ℂfld ) ∈ ℂMod ) |
| 5 |
2 4
|
ax-mp |
⊢ ( ringLMod ‘ ℂfld ) ∈ ℂMod |
| 6 |
1
|
cnrbas |
⊢ ( Base ‘ ( ringLMod ‘ ℂfld ) ) = ℂ |
| 7 |
6
|
eqcomi |
⊢ ℂ = ( Base ‘ ( ringLMod ‘ ℂfld ) ) |
| 8 |
|
cnfldex |
⊢ ℂfld ∈ V |
| 9 |
|
rlmsca |
⊢ ( ℂfld ∈ V → ℂfld = ( Scalar ‘ ( ringLMod ‘ ℂfld ) ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ℂfld = ( Scalar ‘ ( ringLMod ‘ ℂfld ) ) |
| 11 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 12 |
|
rlmvsca |
⊢ ( .r ‘ ℂfld ) = ( ·𝑠 ‘ ( ringLMod ‘ ℂfld ) ) |
| 13 |
11 12
|
eqtri |
⊢ · = ( ·𝑠 ‘ ( ringLMod ‘ ℂfld ) ) |
| 14 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 15 |
14
|
eqcomi |
⊢ ( Base ‘ ℂfld ) = ℂ |
| 16 |
15
|
eqcomi |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 17 |
7 10 13 16
|
clmvsass |
⊢ ( ( ( ringLMod ‘ ℂfld ) ∈ ℂMod ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |
| 18 |
5 17
|
mpan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |