Metamath Proof Explorer


Theorem cnncvsmulassdemo

Description: Derive the associative law for complex number multiplication mulass interpreted as scalar multiplication to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by AV, 9-Oct-2021) (Proof modification is discouraged.)

Ref Expression
Assertion cnncvsmulassdemo ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 eqid ( ringLMod ‘ ℂfld ) = ( ringLMod ‘ ℂfld )
2 1 cncvs ( ringLMod ‘ ℂfld ) ∈ ℂVec
3 id ( ( ringLMod ‘ ℂfld ) ∈ ℂVec → ( ringLMod ‘ ℂfld ) ∈ ℂVec )
4 3 cvsclm ( ( ringLMod ‘ ℂfld ) ∈ ℂVec → ( ringLMod ‘ ℂfld ) ∈ ℂMod )
5 2 4 ax-mp ( ringLMod ‘ ℂfld ) ∈ ℂMod
6 1 cnrbas ( Base ‘ ( ringLMod ‘ ℂfld ) ) = ℂ
7 6 eqcomi ℂ = ( Base ‘ ( ringLMod ‘ ℂfld ) )
8 cnfldex fld ∈ V
9 rlmsca ( ℂfld ∈ V → ℂfld = ( Scalar ‘ ( ringLMod ‘ ℂfld ) ) )
10 8 9 ax-mp fld = ( Scalar ‘ ( ringLMod ‘ ℂfld ) )
11 cnfldmul · = ( .r ‘ ℂfld )
12 rlmvsca ( .r ‘ ℂfld ) = ( ·𝑠 ‘ ( ringLMod ‘ ℂfld ) )
13 11 12 eqtri · = ( ·𝑠 ‘ ( ringLMod ‘ ℂfld ) )
14 cnfldbas ℂ = ( Base ‘ ℂfld )
15 14 eqcomi ( Base ‘ ℂfld ) = ℂ
16 15 eqcomi ℂ = ( Base ‘ ℂfld )
17 7 10 13 16 clmvsass ( ( ( ringLMod ‘ ℂfld ) ∈ ℂMod ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) )
18 5 17 mpan ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) )