| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( ringLMod ` CCfld ) = ( ringLMod ` CCfld ) |
| 2 |
1
|
cncvs |
|- ( ringLMod ` CCfld ) e. CVec |
| 3 |
|
id |
|- ( ( ringLMod ` CCfld ) e. CVec -> ( ringLMod ` CCfld ) e. CVec ) |
| 4 |
3
|
cvsclm |
|- ( ( ringLMod ` CCfld ) e. CVec -> ( ringLMod ` CCfld ) e. CMod ) |
| 5 |
2 4
|
ax-mp |
|- ( ringLMod ` CCfld ) e. CMod |
| 6 |
1
|
cnrbas |
|- ( Base ` ( ringLMod ` CCfld ) ) = CC |
| 7 |
6
|
eqcomi |
|- CC = ( Base ` ( ringLMod ` CCfld ) ) |
| 8 |
|
cnfldex |
|- CCfld e. _V |
| 9 |
|
rlmsca |
|- ( CCfld e. _V -> CCfld = ( Scalar ` ( ringLMod ` CCfld ) ) ) |
| 10 |
8 9
|
ax-mp |
|- CCfld = ( Scalar ` ( ringLMod ` CCfld ) ) |
| 11 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 12 |
|
rlmvsca |
|- ( .r ` CCfld ) = ( .s ` ( ringLMod ` CCfld ) ) |
| 13 |
11 12
|
eqtri |
|- x. = ( .s ` ( ringLMod ` CCfld ) ) |
| 14 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 15 |
14
|
eqcomi |
|- ( Base ` CCfld ) = CC |
| 16 |
15
|
eqcomi |
|- CC = ( Base ` CCfld ) |
| 17 |
7 10 13 16
|
clmvsass |
|- ( ( ( ringLMod ` CCfld ) e. CMod /\ ( A e. CC /\ B e. CC /\ C e. CC ) ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |
| 18 |
5 17
|
mpan |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |