| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( ringLMod ` CCfld ) = ( ringLMod ` CCfld ) | 
						
							| 2 | 1 | cncvs |  |-  ( ringLMod ` CCfld ) e. CVec | 
						
							| 3 |  | id |  |-  ( ( ringLMod ` CCfld ) e. CVec -> ( ringLMod ` CCfld ) e. CVec ) | 
						
							| 4 | 3 | cvsclm |  |-  ( ( ringLMod ` CCfld ) e. CVec -> ( ringLMod ` CCfld ) e. CMod ) | 
						
							| 5 | 2 4 | ax-mp |  |-  ( ringLMod ` CCfld ) e. CMod | 
						
							| 6 | 1 | cnrbas |  |-  ( Base ` ( ringLMod ` CCfld ) ) = CC | 
						
							| 7 | 6 | eqcomi |  |-  CC = ( Base ` ( ringLMod ` CCfld ) ) | 
						
							| 8 |  | cnfldex |  |-  CCfld e. _V | 
						
							| 9 |  | rlmsca |  |-  ( CCfld e. _V -> CCfld = ( Scalar ` ( ringLMod ` CCfld ) ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  CCfld = ( Scalar ` ( ringLMod ` CCfld ) ) | 
						
							| 11 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 12 |  | rlmvsca |  |-  ( .r ` CCfld ) = ( .s ` ( ringLMod ` CCfld ) ) | 
						
							| 13 | 11 12 | eqtri |  |-  x. = ( .s ` ( ringLMod ` CCfld ) ) | 
						
							| 14 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 15 | 14 | eqcomi |  |-  ( Base ` CCfld ) = CC | 
						
							| 16 | 15 | eqcomi |  |-  CC = ( Base ` CCfld ) | 
						
							| 17 | 7 10 13 16 | clmvsass |  |-  ( ( ( ringLMod ` CCfld ) e. CMod /\ ( A e. CC /\ B e. CC /\ C e. CC ) ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) | 
						
							| 18 | 5 17 | mpan |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |