Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( ringLMod ` CCfld ) = ( ringLMod ` CCfld ) |
2 |
1
|
cncvs |
|- ( ringLMod ` CCfld ) e. CVec |
3 |
|
id |
|- ( ( ringLMod ` CCfld ) e. CVec -> ( ringLMod ` CCfld ) e. CVec ) |
4 |
3
|
cvsclm |
|- ( ( ringLMod ` CCfld ) e. CVec -> ( ringLMod ` CCfld ) e. CMod ) |
5 |
2 4
|
ax-mp |
|- ( ringLMod ` CCfld ) e. CMod |
6 |
1
|
cnrbas |
|- ( Base ` ( ringLMod ` CCfld ) ) = CC |
7 |
6
|
eqcomi |
|- CC = ( Base ` ( ringLMod ` CCfld ) ) |
8 |
|
cnfldex |
|- CCfld e. _V |
9 |
|
rlmsca |
|- ( CCfld e. _V -> CCfld = ( Scalar ` ( ringLMod ` CCfld ) ) ) |
10 |
8 9
|
ax-mp |
|- CCfld = ( Scalar ` ( ringLMod ` CCfld ) ) |
11 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
12 |
|
rlmvsca |
|- ( .r ` CCfld ) = ( .s ` ( ringLMod ` CCfld ) ) |
13 |
11 12
|
eqtri |
|- x. = ( .s ` ( ringLMod ` CCfld ) ) |
14 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
15 |
14
|
eqcomi |
|- ( Base ` CCfld ) = CC |
16 |
15
|
eqcomi |
|- CC = ( Base ` CCfld ) |
17 |
7 10 13 16
|
clmvsass |
|- ( ( ( ringLMod ` CCfld ) e. CMod /\ ( A e. CC /\ B e. CC /\ C e. CC ) ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |
18 |
5 17
|
mpan |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |