| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfldnm |  |-  abs = ( norm ` CCfld ) | 
						
							| 2 | 1 | a1i |  |-  ( A e. CC -> abs = ( norm ` CCfld ) ) | 
						
							| 3 |  | cnfldneg |  |-  ( A e. CC -> ( ( invg ` CCfld ) ` A ) = -u A ) | 
						
							| 4 | 3 | eqcomd |  |-  ( A e. CC -> -u A = ( ( invg ` CCfld ) ` A ) ) | 
						
							| 5 | 2 4 | fveq12d |  |-  ( A e. CC -> ( abs ` -u A ) = ( ( norm ` CCfld ) ` ( ( invg ` CCfld ) ` A ) ) ) | 
						
							| 6 |  | cnngp |  |-  CCfld e. NrmGrp | 
						
							| 7 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 8 |  | eqid |  |-  ( norm ` CCfld ) = ( norm ` CCfld ) | 
						
							| 9 |  | eqid |  |-  ( invg ` CCfld ) = ( invg ` CCfld ) | 
						
							| 10 | 7 8 9 | nminv |  |-  ( ( CCfld e. NrmGrp /\ A e. CC ) -> ( ( norm ` CCfld ) ` ( ( invg ` CCfld ) ` A ) ) = ( ( norm ` CCfld ) ` A ) ) | 
						
							| 11 | 6 10 | mpan |  |-  ( A e. CC -> ( ( norm ` CCfld ) ` ( ( invg ` CCfld ) ` A ) ) = ( ( norm ` CCfld ) ` A ) ) | 
						
							| 12 | 1 | eqcomi |  |-  ( norm ` CCfld ) = abs | 
						
							| 13 | 12 | fveq1i |  |-  ( ( norm ` CCfld ) ` A ) = ( abs ` A ) | 
						
							| 14 | 13 | a1i |  |-  ( A e. CC -> ( ( norm ` CCfld ) ` A ) = ( abs ` A ) ) | 
						
							| 15 | 5 11 14 | 3eqtrd |  |-  ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) ) |