Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldnm |
|- abs = ( norm ` CCfld ) |
2 |
1
|
a1i |
|- ( A e. CC -> abs = ( norm ` CCfld ) ) |
3 |
|
cnfldneg |
|- ( A e. CC -> ( ( invg ` CCfld ) ` A ) = -u A ) |
4 |
3
|
eqcomd |
|- ( A e. CC -> -u A = ( ( invg ` CCfld ) ` A ) ) |
5 |
2 4
|
fveq12d |
|- ( A e. CC -> ( abs ` -u A ) = ( ( norm ` CCfld ) ` ( ( invg ` CCfld ) ` A ) ) ) |
6 |
|
cnngp |
|- CCfld e. NrmGrp |
7 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
8 |
|
eqid |
|- ( norm ` CCfld ) = ( norm ` CCfld ) |
9 |
|
eqid |
|- ( invg ` CCfld ) = ( invg ` CCfld ) |
10 |
7 8 9
|
nminv |
|- ( ( CCfld e. NrmGrp /\ A e. CC ) -> ( ( norm ` CCfld ) ` ( ( invg ` CCfld ) ` A ) ) = ( ( norm ` CCfld ) ` A ) ) |
11 |
6 10
|
mpan |
|- ( A e. CC -> ( ( norm ` CCfld ) ` ( ( invg ` CCfld ) ` A ) ) = ( ( norm ` CCfld ) ` A ) ) |
12 |
1
|
eqcomi |
|- ( norm ` CCfld ) = abs |
13 |
12
|
fveq1i |
|- ( ( norm ` CCfld ) ` A ) = ( abs ` A ) |
14 |
13
|
a1i |
|- ( A e. CC -> ( ( norm ` CCfld ) ` A ) = ( abs ` A ) ) |
15 |
5 11 14
|
3eqtrd |
|- ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) ) |