Metamath Proof Explorer


Theorem cnnvnm

Description: The norm operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypothesis cnnvnm.6 U=+×abs
Assertion cnnvnm abs=normCVU

Proof

Step Hyp Ref Expression
1 cnnvnm.6 U=+×abs
2 eqid normCVU=normCVU
3 2 nmcvfval normCVU=2ndU
4 1 fveq2i 2ndU=2nd+×abs
5 opex +×V
6 absf abs:
7 cnex V
8 fex abs:VabsV
9 6 7 8 mp2an absV
10 5 9 op2nd 2nd+×abs=abs
11 3 4 10 3eqtrri abs=normCVU