Metamath Proof Explorer


Theorem cnnvs

Description: The scalar product operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypothesis cnnvs.6 U=+×abs
Assertion cnnvs ×=𝑠OLDU

Proof

Step Hyp Ref Expression
1 cnnvs.6 U=+×abs
2 eqid 𝑠OLDU=𝑠OLDU
3 2 smfval 𝑠OLDU=2nd1stU
4 1 fveq2i 1stU=1st+×abs
5 opex +×V
6 absf abs:
7 cnex V
8 fex abs:VabsV
9 6 7 8 mp2an absV
10 5 9 op1st 1st+×abs=+×
11 4 10 eqtri 1stU=+×
12 11 fveq2i 2nd1stU=2nd+×
13 addex +V
14 mulex ×V
15 13 14 op2nd 2nd+×=×
16 3 12 15 3eqtrri ×=𝑠OLDU