Metamath Proof Explorer


Theorem cnperf

Description: The complex numbers are a perfect space. (Contributed by Mario Carneiro, 26-Dec-2016)

Ref Expression
Hypothesis recld2.1 J=TopOpenfld
Assertion cnperf JPerf

Proof

Step Hyp Ref Expression
1 recld2.1 J=TopOpenfld
2 1 cnfldtopon JTopOn
3 2 toponunii =J
4 3 restid JTopOnJ𝑡=J
5 2 4 ax-mp J𝑡=J
6 recn yy
7 addcl xyx+y
8 6 7 sylan2 xyx+y
9 ssid
10 1 8 9 reperflem J𝑡Perf
11 5 10 eqeltrri JPerf