Description: A subset of the real numbers that is closed under addition with real numbers is perfect. (Contributed by Mario Carneiro, 26-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | recld2.1 | |
|
reperflem.2 | |
||
reperflem.3 | |
||
Assertion | reperflem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld2.1 | |
|
2 | reperflem.2 | |
|
3 | reperflem.3 | |
|
4 | cnxmet | |
|
5 | 3 | sseli | |
6 | 1 | cnfldtopn | |
7 | 6 | neibl | |
8 | 4 5 7 | sylancr | |
9 | ssrin | |
|
10 | 2 | ralrimiva | |
11 | rpre | |
|
12 | 11 | rehalfcld | |
13 | oveq2 | |
|
14 | 13 | eleq1d | |
15 | 14 | rspccva | |
16 | 10 12 15 | syl2an | |
17 | 3 16 | sselid | |
18 | 5 | adantr | |
19 | eqid | |
|
20 | 19 | cnmetdval | |
21 | 17 18 20 | syl2anc | |
22 | simpr | |
|
23 | 22 | rphalfcld | |
24 | 23 | rpcnd | |
25 | 18 24 | pncan2d | |
26 | 25 | fveq2d | |
27 | 23 | rpred | |
28 | 23 | rpge0d | |
29 | 27 28 | absidd | |
30 | 21 26 29 | 3eqtrd | |
31 | rphalflt | |
|
32 | 31 | adantl | |
33 | 30 32 | eqbrtrd | |
34 | 4 | a1i | |
35 | rpxr | |
|
36 | 35 | adantl | |
37 | elbl3 | |
|
38 | 34 36 18 17 37 | syl22anc | |
39 | 33 38 | mpbird | |
40 | 23 | rpne0d | |
41 | 25 40 | eqnetrd | |
42 | 17 18 41 | subne0ad | |
43 | eldifsn | |
|
44 | 16 42 43 | sylanbrc | |
45 | inelcm | |
|
46 | 39 44 45 | syl2anc | |
47 | ssn0 | |
|
48 | 47 | ex | |
49 | 9 46 48 | syl2imc | |
50 | 49 | rexlimdva | |
51 | 50 | adantld | |
52 | 8 51 | sylbid | |
53 | 52 | ralrimiv | |
54 | 1 | cnfldtop | |
55 | 1 | cnfldtopon | |
56 | 55 | toponunii | |
57 | 56 | islp2 | |
58 | 54 3 5 57 | mp3an12i | |
59 | 53 58 | mpbird | |
60 | 59 | ssriv | |
61 | eqid | |
|
62 | 56 61 | restperf | |
63 | 54 3 62 | mp2an | |
64 | 60 63 | mpbir | |