Metamath Proof Explorer


Theorem reperflem

Description: A subset of the real numbers that is closed under addition with real numbers is perfect. (Contributed by Mario Carneiro, 26-Dec-2016)

Ref Expression
Hypotheses recld2.1 J=TopOpenfld
reperflem.2 uSvu+vS
reperflem.3 S
Assertion reperflem J𝑡SPerf

Proof

Step Hyp Ref Expression
1 recld2.1 J=TopOpenfld
2 reperflem.2 uSvu+vS
3 reperflem.3 S
4 cnxmet abs∞Met
5 3 sseli uSu
6 1 cnfldtopn J=MetOpenabs
7 6 neibl abs∞MetunneiJunr+uballabsrn
8 4 5 7 sylancr uSnneiJunr+uballabsrn
9 ssrin uballabsrnuballabsrSunSu
10 2 ralrimiva uSvu+vS
11 rpre r+r
12 11 rehalfcld r+r2
13 oveq2 v=r2u+v=u+r2
14 13 eleq1d v=r2u+vSu+r2S
15 14 rspccva vu+vSr2u+r2S
16 10 12 15 syl2an uSr+u+r2S
17 3 16 sselid uSr+u+r2
18 5 adantr uSr+u
19 eqid abs=abs
20 19 cnmetdval u+r2uu+r2absu=u+r2-u
21 17 18 20 syl2anc uSr+u+r2absu=u+r2-u
22 simpr uSr+r+
23 22 rphalfcld uSr+r2+
24 23 rpcnd uSr+r2
25 18 24 pncan2d uSr+u+r2-u=r2
26 25 fveq2d uSr+u+r2-u=r2
27 23 rpred uSr+r2
28 23 rpge0d uSr+0r2
29 27 28 absidd uSr+r2=r2
30 21 26 29 3eqtrd uSr+u+r2absu=r2
31 rphalflt r+r2<r
32 31 adantl uSr+r2<r
33 30 32 eqbrtrd uSr+u+r2absu<r
34 4 a1i uSr+abs∞Met
35 rpxr r+r*
36 35 adantl uSr+r*
37 elbl3 abs∞Metr*uu+r2u+r2uballabsru+r2absu<r
38 34 36 18 17 37 syl22anc uSr+u+r2uballabsru+r2absu<r
39 33 38 mpbird uSr+u+r2uballabsr
40 23 rpne0d uSr+r20
41 25 40 eqnetrd uSr+u+r2-u0
42 17 18 41 subne0ad uSr+u+r2u
43 eldifsn u+r2Suu+r2Su+r2u
44 16 42 43 sylanbrc uSr+u+r2Su
45 inelcm u+r2uballabsru+r2SuuballabsrSu
46 39 44 45 syl2anc uSr+uballabsrSu
47 ssn0 uballabsrSunSuuballabsrSunSu
48 47 ex uballabsrSunSuuballabsrSunSu
49 9 46 48 syl2imc uSr+uballabsrnnSu
50 49 rexlimdva uSr+uballabsrnnSu
51 50 adantld uSnr+uballabsrnnSu
52 8 51 sylbid uSnneiJunSu
53 52 ralrimiv uSnneiJunSu
54 1 cnfldtop JTop
55 1 cnfldtopon JTopOn
56 55 toponunii =J
57 56 islp2 JTopSuulimPtJSnneiJunSu
58 54 3 5 57 mp3an12i uSulimPtJSnneiJunSu
59 53 58 mpbird uSulimPtJS
60 59 ssriv SlimPtJS
61 eqid J𝑡S=J𝑡S
62 56 61 restperf JTopSJ𝑡SPerfSlimPtJS
63 54 3 62 mp2an J𝑡SPerfSlimPtJS
64 60 63 mpbir J𝑡SPerf