Metamath Proof Explorer


Theorem restperf

Description: Perfection of a subspace. Note that the term "perfect set" is reserved forclosed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses restcls.1 X=J
restcls.2 K=J𝑡Y
Assertion restperf JTopYXKPerfYlimPtJY

Proof

Step Hyp Ref Expression
1 restcls.1 X=J
2 restcls.2 K=J𝑡Y
3 1 toptopon JTopJTopOnX
4 resttopon JTopOnXYXJ𝑡YTopOnY
5 3 4 sylanb JTopYXJ𝑡YTopOnY
6 2 5 eqeltrid JTopYXKTopOnY
7 topontop KTopOnYKTop
8 6 7 syl JTopYXKTop
9 eqid K=K
10 9 isperf KPerfKToplimPtKK=K
11 10 baib KTopKPerflimPtKK=K
12 8 11 syl JTopYXKPerflimPtKK=K
13 sseqin2 YlimPtJYlimPtJYY=Y
14 ssid YY
15 1 2 restlp JTopYXYYlimPtKY=limPtJYY
16 14 15 mp3an3 JTopYXlimPtKY=limPtJYY
17 toponuni KTopOnYY=K
18 6 17 syl JTopYXY=K
19 18 fveq2d JTopYXlimPtKY=limPtKK
20 16 19 eqtr3d JTopYXlimPtJYY=limPtKK
21 20 18 eqeq12d JTopYXlimPtJYY=YlimPtKK=K
22 13 21 bitrid JTopYXYlimPtJYlimPtKK=K
23 12 22 bitr4d JTopYXKPerfYlimPtJY