Description: Perfection of a subspace. Note that the term "perfect set" is reserved forclosed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | restcls.1 | |
|
restcls.2 | |
||
Assertion | restperf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restcls.1 | |
|
2 | restcls.2 | |
|
3 | 1 | toptopon | |
4 | resttopon | |
|
5 | 3 4 | sylanb | |
6 | 2 5 | eqeltrid | |
7 | topontop | |
|
8 | 6 7 | syl | |
9 | eqid | |
|
10 | 9 | isperf | |
11 | 10 | baib | |
12 | 8 11 | syl | |
13 | sseqin2 | |
|
14 | ssid | |
|
15 | 1 2 | restlp | |
16 | 14 15 | mp3an3 | |
17 | toponuni | |
|
18 | 6 17 | syl | |
19 | 18 | fveq2d | |
20 | 16 19 | eqtr3d | |
21 | 20 18 | eqeq12d | |
22 | 13 21 | bitrid | |
23 | 12 22 | bitr4d | |