Description: An open subset of a perfect space is perfect. (Contributed by Mario Carneiro, 25-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | restcls.1 | |
|
restcls.2 | |
||
Assertion | perfopn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restcls.1 | |
|
2 | restcls.2 | |
|
3 | perftop | |
|
4 | 3 | adantr | |
5 | 1 | toptopon | |
6 | 4 5 | sylib | |
7 | elssuni | |
|
8 | 7 | adantl | |
9 | 8 1 | sseqtrrdi | |
10 | resttopon | |
|
11 | 6 9 10 | syl2anc | |
12 | 2 11 | eqeltrid | |
13 | topontop | |
|
14 | 12 13 | syl | |
15 | 9 | sselda | |
16 | 1 | perfi | |
17 | 16 | adantlr | |
18 | 15 17 | syldan | |
19 | 2 | eleq2i | |
20 | restopn2 | |
|
21 | 3 20 | sylan | |
22 | 21 | adantr | |
23 | simpl | |
|
24 | 22 23 | syl6bi | |
25 | 19 24 | biimtrid | |
26 | 18 25 | mtod | |
27 | 26 | ralrimiva | |
28 | toponuni | |
|
29 | 12 28 | syl | |
30 | 29 | raleqdv | |
31 | 27 30 | mpbid | |
32 | eqid | |
|
33 | 32 | isperf3 | |
34 | 14 31 33 | sylanbrc | |