Metamath Proof Explorer


Theorem perfopn

Description: An open subset of a perfect space is perfect. (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses restcls.1 X=J
restcls.2 K=J𝑡Y
Assertion perfopn JPerfYJKPerf

Proof

Step Hyp Ref Expression
1 restcls.1 X=J
2 restcls.2 K=J𝑡Y
3 perftop JPerfJTop
4 3 adantr JPerfYJJTop
5 1 toptopon JTopJTopOnX
6 4 5 sylib JPerfYJJTopOnX
7 elssuni YJYJ
8 7 adantl JPerfYJYJ
9 8 1 sseqtrrdi JPerfYJYX
10 resttopon JTopOnXYXJ𝑡YTopOnY
11 6 9 10 syl2anc JPerfYJJ𝑡YTopOnY
12 2 11 eqeltrid JPerfYJKTopOnY
13 topontop KTopOnYKTop
14 12 13 syl JPerfYJKTop
15 9 sselda JPerfYJxYxX
16 1 perfi JPerfxX¬xJ
17 16 adantlr JPerfYJxX¬xJ
18 15 17 syldan JPerfYJxY¬xJ
19 2 eleq2i xKxJ𝑡Y
20 restopn2 JTopYJxJ𝑡YxJxY
21 3 20 sylan JPerfYJxJ𝑡YxJxY
22 21 adantr JPerfYJxYxJ𝑡YxJxY
23 simpl xJxYxJ
24 22 23 syl6bi JPerfYJxYxJ𝑡YxJ
25 19 24 biimtrid JPerfYJxYxKxJ
26 18 25 mtod JPerfYJxY¬xK
27 26 ralrimiva JPerfYJxY¬xK
28 toponuni KTopOnYY=K
29 12 28 syl JPerfYJY=K
30 29 raleqdv JPerfYJxY¬xKxK¬xK
31 27 30 mpbid JPerfYJxK¬xK
32 eqid K=K
33 32 isperf3 KPerfKTopxK¬xK
34 14 31 33 sylanbrc JPerfYJKPerf