Metamath Proof Explorer


Theorem isperf3

Description: A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis lpfval.1 X=J
Assertion isperf3 JPerfJTopxX¬xJ

Proof

Step Hyp Ref Expression
1 lpfval.1 X=J
2 1 isperf2 JPerfJTopXlimPtJX
3 dfss3 XlimPtJXxXxlimPtJX
4 1 maxlp JTopxlimPtJXxX¬xJ
5 4 baibd JTopxXxlimPtJX¬xJ
6 5 ralbidva JTopxXxlimPtJXxX¬xJ
7 3 6 bitrid JTopXlimPtJXxX¬xJ
8 7 pm5.32i JTopXlimPtJXJTopxX¬xJ
9 2 8 bitri JPerfJTopxX¬xJ