Metamath Proof Explorer


Theorem isperf2

Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis lpfval.1 X=J
Assertion isperf2 JPerfJTopXlimPtJX

Proof

Step Hyp Ref Expression
1 lpfval.1 X=J
2 1 isperf JPerfJToplimPtJX=X
3 ssid XX
4 1 lpss JTopXXlimPtJXX
5 3 4 mpan2 JToplimPtJXX
6 eqss limPtJX=XlimPtJXXXlimPtJX
7 6 baib limPtJXXlimPtJX=XXlimPtJX
8 5 7 syl JToplimPtJX=XXlimPtJX
9 8 pm5.32i JToplimPtJX=XJTopXlimPtJX
10 2 9 bitri JPerfJTopXlimPtJX