Metamath Proof Explorer


Theorem restperf

Description: Perfection of a subspace. Note that the term "perfect set" is reserved forclosed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = ( 𝐽t 𝑌 )
Assertion restperf ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → ( 𝐾 ∈ Perf ↔ 𝑌 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 restcls.1 𝑋 = 𝐽
2 restcls.2 𝐾 = ( 𝐽t 𝑌 )
3 1 toptopon ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
4 resttopon ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌𝑋 ) → ( 𝐽t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) )
5 3 4 sylanb ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → ( 𝐽t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) )
6 2 5 eqeltrid ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) )
7 topontop ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top )
8 6 7 syl ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → 𝐾 ∈ Top )
9 eqid 𝐾 = 𝐾
10 9 isperf ( 𝐾 ∈ Perf ↔ ( 𝐾 ∈ Top ∧ ( ( limPt ‘ 𝐾 ) ‘ 𝐾 ) = 𝐾 ) )
11 10 baib ( 𝐾 ∈ Top → ( 𝐾 ∈ Perf ↔ ( ( limPt ‘ 𝐾 ) ‘ 𝐾 ) = 𝐾 ) )
12 8 11 syl ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → ( 𝐾 ∈ Perf ↔ ( ( limPt ‘ 𝐾 ) ‘ 𝐾 ) = 𝐾 ) )
13 sseqin2 ( 𝑌 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ↔ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) = 𝑌 )
14 ssid 𝑌𝑌
15 1 2 restlp ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑌𝑌 ) → ( ( limPt ‘ 𝐾 ) ‘ 𝑌 ) = ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) )
16 14 15 mp3an3 ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → ( ( limPt ‘ 𝐾 ) ‘ 𝑌 ) = ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) )
17 toponuni ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = 𝐾 )
18 6 17 syl ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → 𝑌 = 𝐾 )
19 18 fveq2d ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → ( ( limPt ‘ 𝐾 ) ‘ 𝑌 ) = ( ( limPt ‘ 𝐾 ) ‘ 𝐾 ) )
20 16 19 eqtr3d ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) = ( ( limPt ‘ 𝐾 ) ‘ 𝐾 ) )
21 20 18 eqeq12d ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → ( ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) = 𝑌 ↔ ( ( limPt ‘ 𝐾 ) ‘ 𝐾 ) = 𝐾 ) )
22 13 21 syl5bb ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → ( 𝑌 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ↔ ( ( limPt ‘ 𝐾 ) ‘ 𝐾 ) = 𝐾 ) )
23 12 22 bitr4d ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → ( 𝐾 ∈ Perf ↔ 𝑌 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ) )