Step |
Hyp |
Ref |
Expression |
1 |
|
restcls.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
restcls.2 |
⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) |
3 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
4 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) |
5 |
3 4
|
sylanb |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) |
6 |
2 5
|
eqeltrid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
7 |
|
topontop |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝐾 ∈ Top ) |
9 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
10 |
9
|
isperf |
⊢ ( 𝐾 ∈ Perf ↔ ( 𝐾 ∈ Top ∧ ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) = ∪ 𝐾 ) ) |
11 |
10
|
baib |
⊢ ( 𝐾 ∈ Top → ( 𝐾 ∈ Perf ↔ ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) = ∪ 𝐾 ) ) |
12 |
8 11
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐾 ∈ Perf ↔ ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) = ∪ 𝐾 ) ) |
13 |
|
sseqin2 |
⊢ ( 𝑌 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ↔ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) = 𝑌 ) |
14 |
|
ssid |
⊢ 𝑌 ⊆ 𝑌 |
15 |
1 2
|
restlp |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑌 ) → ( ( limPt ‘ 𝐾 ) ‘ 𝑌 ) = ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) ) |
16 |
14 15
|
mp3an3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐾 ) ‘ 𝑌 ) = ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) ) |
17 |
|
toponuni |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) |
18 |
6 17
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 = ∪ 𝐾 ) |
19 |
18
|
fveq2d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐾 ) ‘ 𝑌 ) = ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) ) |
20 |
16 19
|
eqtr3d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) = ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) ) |
21 |
20 18
|
eqeq12d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( ( ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ∩ 𝑌 ) = 𝑌 ↔ ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) = ∪ 𝐾 ) ) |
22 |
13 21
|
syl5bb |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑌 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ↔ ( ( limPt ‘ 𝐾 ) ‘ ∪ 𝐾 ) = ∪ 𝐾 ) ) |
23 |
12 22
|
bitr4d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐾 ∈ Perf ↔ 𝑌 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑌 ) ) ) |