Metamath Proof Explorer


Theorem restlp

Description: The limit points of a subset restrict naturally in a subspace. (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses restcls.1 X=J
restcls.2 K=J𝑡Y
Assertion restlp JTopYXSYlimPtKS=limPtJSY

Proof

Step Hyp Ref Expression
1 restcls.1 X=J
2 restcls.2 K=J𝑡Y
3 simp3 JTopYXSYSY
4 3 ssdifssd JTopYXSYSxY
5 1 2 restcls JTopYXSxYclsKSx=clsJSxY
6 4 5 syld3an3 JTopYXSYclsKSx=clsJSxY
7 6 eleq2d JTopYXSYxclsKSxxclsJSxY
8 elin xclsJSxYxclsJSxxY
9 7 8 bitrdi JTopYXSYxclsKSxxclsJSxxY
10 simp1 JTopYXSYJTop
11 1 toptopon JTopJTopOnX
12 10 11 sylib JTopYXSYJTopOnX
13 simp2 JTopYXSYYX
14 resttopon JTopOnXYXJ𝑡YTopOnY
15 12 13 14 syl2anc JTopYXSYJ𝑡YTopOnY
16 2 15 eqeltrid JTopYXSYKTopOnY
17 topontop KTopOnYKTop
18 16 17 syl JTopYXSYKTop
19 toponuni KTopOnYY=K
20 16 19 syl JTopYXSYY=K
21 3 20 sseqtrd JTopYXSYSK
22 eqid K=K
23 22 islp KTopSKxlimPtKSxclsKSx
24 18 21 23 syl2anc JTopYXSYxlimPtKSxclsKSx
25 elin xlimPtJSYxlimPtJSxY
26 3 13 sstrd JTopYXSYSX
27 1 islp JTopSXxlimPtJSxclsJSx
28 10 26 27 syl2anc JTopYXSYxlimPtJSxclsJSx
29 28 anbi1d JTopYXSYxlimPtJSxYxclsJSxxY
30 25 29 bitrid JTopYXSYxlimPtJSYxclsJSxxY
31 9 24 30 3bitr4d JTopYXSYxlimPtKSxlimPtJSY
32 31 eqrdv JTopYXSYlimPtKS=limPtJSY