Metamath Proof Explorer


Theorem neibl

Description: The neighborhoods around a point P of a metric space are those subsets containing a ball around P . Definition of neighborhood in Kreyszig p. 19. (Contributed by NM, 8-Nov-2007) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypothesis mopni.1 J=MetOpenD
Assertion neibl D∞MetXPXNneiJPNXr+PballDrN

Proof

Step Hyp Ref Expression
1 mopni.1 J=MetOpenD
2 1 mopntop D∞MetXJTop
3 2 adantr D∞MetXPXJTop
4 1 mopnuni D∞MetXX=J
5 4 eleq2d D∞MetXPXPJ
6 5 biimpa D∞MetXPXPJ
7 eqid J=J
8 7 isneip JTopPJNneiJPNJyJPyyN
9 3 6 8 syl2anc D∞MetXPXNneiJPNJyJPyyN
10 4 sseq2d D∞MetXNXNJ
11 10 adantr D∞MetXPXNXNJ
12 11 anbi1d D∞MetXPXNXyJPyyNNJyJPyyN
13 1 mopni2 D∞MetXyJPyr+PballDry
14 sstr2 PballDryyNPballDrN
15 14 com12 yNPballDryPballDrN
16 15 reximdv yNr+PballDryr+PballDrN
17 13 16 syl5com D∞MetXyJPyyNr+PballDrN
18 17 3exp D∞MetXyJPyyNr+PballDrN
19 18 imp4a D∞MetXyJPyyNr+PballDrN
20 19 ad2antrr D∞MetXPXNXyJPyyNr+PballDrN
21 20 rexlimdv D∞MetXPXNXyJPyyNr+PballDrN
22 rpxr r+r*
23 1 blopn D∞MetXPXr*PballDrJ
24 22 23 syl3an3 D∞MetXPXr+PballDrJ
25 blcntr D∞MetXPXr+PPballDr
26 eleq2 y=PballDrPyPPballDr
27 sseq1 y=PballDryNPballDrN
28 26 27 anbi12d y=PballDrPyyNPPballDrPballDrN
29 28 rspcev PballDrJPPballDrPballDrNyJPyyN
30 29 expr PballDrJPPballDrPballDrNyJPyyN
31 24 25 30 syl2anc D∞MetXPXr+PballDrNyJPyyN
32 31 3expia D∞MetXPXr+PballDrNyJPyyN
33 32 rexlimdv D∞MetXPXr+PballDrNyJPyyN
34 33 adantr D∞MetXPXNXr+PballDrNyJPyyN
35 21 34 impbid D∞MetXPXNXyJPyyNr+PballDrN
36 35 pm5.32da D∞MetXPXNXyJPyyNNXr+PballDrN
37 9 12 36 3bitr2d D∞MetXPXNneiJPNXr+PballDrN