Metamath Proof Explorer


Theorem cnvcnv

Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003) (Proof shortened by BJ, 26-Nov-2021)

Ref Expression
Assertion cnvcnv A-1-1=AV×V

Proof

Step Hyp Ref Expression
1 cnvin A-1V×V-1-1=A-1-1V×V-1-1
2 cnvin AV×V-1=A-1V×V-1
3 2 cnveqi AV×V-1-1=A-1V×V-1-1
4 relcnv RelA-1-1
5 df-rel RelA-1-1A-1-1V×V
6 4 5 mpbi A-1-1V×V
7 relxp RelV×V
8 dfrel2 RelV×VV×V-1-1=V×V
9 7 8 mpbi V×V-1-1=V×V
10 6 9 sseqtrri A-1-1V×V-1-1
11 dfss A-1-1V×V-1-1A-1-1=A-1-1V×V-1-1
12 10 11 mpbi A-1-1=A-1-1V×V-1-1
13 1 3 12 3eqtr4ri A-1-1=AV×V-1-1
14 relinxp RelAV×V
15 dfrel2 RelAV×VAV×V-1-1=AV×V
16 14 15 mpbi AV×V-1-1=AV×V
17 13 16 eqtri A-1-1=AV×V