Metamath Proof Explorer


Theorem cnvco1

Description: Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014)

Ref Expression
Assertion cnvco1 A -1 B -1 = B -1 A

Proof

Step Hyp Ref Expression
1 relcnv Rel A -1 B -1
2 relco Rel B -1 A
3 vex z V
4 vex y V
5 3 4 brcnv z B -1 y y B z
6 5 bicomi y B z z B -1 y
7 vex x V
8 3 7 brcnv z A -1 x x A z
9 6 8 anbi12ci y B z z A -1 x x A z z B -1 y
10 9 exbii z y B z z A -1 x z x A z z B -1 y
11 7 4 opelcnv x y A -1 B -1 y x A -1 B
12 4 7 opelco y x A -1 B z y B z z A -1 x
13 11 12 bitri x y A -1 B -1 z y B z z A -1 x
14 7 4 opelco x y B -1 A z x A z z B -1 y
15 10 13 14 3bitr4i x y A -1 B -1 x y B -1 A
16 1 2 15 eqrelriiv A -1 B -1 = B -1 A