Metamath Proof Explorer


Theorem cnvimadfsn

Description: The support of functions "defined" by inverse images expressed by binary relations. (Contributed by AV, 7-Apr-2019)

Ref Expression
Assertion cnvimadfsn R-1VZ=x|yxRyyZ

Proof

Step Hyp Ref Expression
1 dfima3 R-1VZ=x|yyVZyxR-1
2 eldifvsn yVyVZyZ
3 2 elv yVZyZ
4 vex yV
5 vex xV
6 4 5 opelcnv yxR-1xyR
7 df-br xRyxyR
8 6 7 bitr4i yxR-1xRy
9 3 8 anbi12ci yVZyxR-1xRyyZ
10 9 exbii yyVZyxR-1yxRyyZ
11 10 abbii x|yyVZyxR-1=x|yxRyyZ
12 1 11 eqtri R-1VZ=x|yxRyyZ