Metamath Proof Explorer


Theorem suppimacnvss

Description: The support of functions "defined" by inverse images is a subset of the support defined by df-supp . (Contributed by AV, 7-Apr-2019)

Ref Expression
Assertion suppimacnvss RVZWR-1VZRsuppZ

Proof

Step Hyp Ref Expression
1 exsimpl yxRyyZyxRy
2 pm5.1 xRyyZxRyyZ
3 2 eximi yxRyyZyxRyyZ
4 1 3 jca yxRyyZyxRyyxRyyZ
5 4 a1i RVZWyxRyyZyxRyyxRyyZ
6 5 ss2abdv RVZWx|yxRyyZx|yxRyyxRyyZ
7 cnvimadfsn R-1VZ=x|yxRyyZ
8 7 a1i RVZWR-1VZ=x|yxRyyZ
9 suppvalbr RVZWRsuppZ=x|yxRyyxRyyZ
10 6 8 9 3sstr4d RVZWR-1VZRsuppZ