Metamath Proof Explorer


Theorem cnvsng

Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015) (Proof shortened by BJ, 12-Feb-2022)

Ref Expression
Assertion cnvsng AVBWAB-1=BA

Proof

Step Hyp Ref Expression
1 cnvcnvsn BA-1-1=AB-1
2 relsnopg BWAVRelBA
3 2 ancoms AVBWRelBA
4 dfrel2 RelBABA-1-1=BA
5 3 4 sylib AVBWBA-1-1=BA
6 1 5 eqtr3id AVBWAB-1=BA