Metamath Proof Explorer


Theorem cnvtrrel

Description: The converse of a transitive relation is a transitive relation. (Contributed by RP, 25-Dec-2019)

Ref Expression
Assertion cnvtrrel S S S S -1 S -1 S -1

Proof

Step Hyp Ref Expression
1 cnvss S S S S S -1 S -1
2 cnvss S S -1 S -1 S S -1 -1 S -1 -1
3 cnvco S S -1 = S -1 S -1
4 3 cnveqi S S -1 -1 = S -1 S -1 -1
5 cnvco S -1 S -1 -1 = S -1 -1 S -1 -1
6 cocnvcnv1 S -1 -1 S -1 -1 = S S -1 -1
7 cocnvcnv2 S S -1 -1 = S S
8 6 7 eqtri S -1 -1 S -1 -1 = S S
9 4 5 8 3eqtri S S -1 -1 = S S
10 9 sseq1i S S -1 -1 S -1 -1 S S S -1 -1
11 10 biimpi S S -1 -1 S -1 -1 S S S -1 -1
12 cnvcnvss S -1 -1 S
13 11 12 sstrdi S S -1 -1 S -1 -1 S S S
14 2 13 syl S S -1 S -1 S S S
15 1 14 impbii S S S S S -1 S -1
16 3 sseq1i S S -1 S -1 S -1 S -1 S -1
17 15 16 bitri S S S S -1 S -1 S -1