Metamath Proof Explorer


Theorem coe1f

Description: Functionality of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses coe1fval.a A=coe1F
coe1f.b B=BaseP
coe1f.p P=Poly1R
coe1f.k K=BaseR
Assertion coe1f FBA:0K

Proof

Step Hyp Ref Expression
1 coe1fval.a A=coe1F
2 coe1f.b B=BaseP
3 coe1f.p P=Poly1R
4 coe1f.k K=BaseR
5 3 2 ply1bascl FBFBasePwSer1R
6 eqid BasePwSer1R=BasePwSer1R
7 eqid PwSer1R=PwSer1R
8 1 6 7 4 coe1f2 FBasePwSer1RA:0K
9 5 8 syl FBA:0K