Metamath Proof Explorer


Theorem coeq1d

Description: Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000)

Ref Expression
Hypothesis coeq1d.1 φA=B
Assertion coeq1d φAC=BC

Proof

Step Hyp Ref Expression
1 coeq1d.1 φA=B
2 coeq1 A=BAC=BC
3 1 2 syl φAC=BC