Metamath Proof Explorer


Theorem cofucla

Description: The composition of two functors is a functor. Proposition 3.23 of Adamek p. 33. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses cofucla.f φ F C Func D G
cofucla.k φ K D Func E L
Assertion cofucla φ K L func F G C Func E

Proof

Step Hyp Ref Expression
1 cofucla.f φ F C Func D G
2 cofucla.k φ K D Func E L
3 df-br F C Func D G F G C Func D
4 1 3 sylib φ F G C Func D
5 df-br K D Func E L K L D Func E
6 2 5 sylib φ K L D Func E
7 4 6 cofucl φ K L func F G C Func E