Metamath Proof Explorer


Theorem coi2

Description: Composition with the identity relation. Part of Theorem 3.7(i) of Monk1 p. 36. (Contributed by NM, 22-Apr-2004)

Ref Expression
Assertion coi2 RelAIA=A

Proof

Step Hyp Ref Expression
1 dfrel2 RelAA-1-1=A
2 cnvco A-1I-1=I-1A-1-1
3 relcnv RelA-1
4 coi1 RelA-1A-1I=A-1
5 3 4 ax-mp A-1I=A-1
6 5 cnveqi A-1I-1=A-1-1
7 2 6 eqtr3i I-1A-1-1=A-1-1
8 cnvi I-1=I
9 coeq2 A-1-1=AI-1A-1-1=I-1A
10 coeq1 I-1=II-1A=IA
11 9 10 sylan9eq A-1-1=AI-1=II-1A-1-1=IA
12 8 11 mpan2 A-1-1=AI-1A-1-1=IA
13 id A-1-1=AA-1-1=A
14 7 12 13 3eqtr3a A-1-1=AIA=A
15 1 14 sylbi RelAIA=A