Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Probability
Probabilities - example
coinflipspace
Next ⟩
coinflipuniv
Metamath Proof Explorer
Ascii
Unicode
Theorem
coinflipspace
Description:
The space of our coin-flip probability.
(Contributed by
Thierry Arnoux
, 15-Jan-2017)
Ref
Expression
Hypotheses
coinflip.h
⊢
H
∈
V
coinflip.t
⊢
T
∈
V
coinflip.th
⊢
H
≠
T
coinflip.2
⊢
P
=
.
↾
𝒫
H
T
∘
fc
⁡
÷
2
coinflip.3
⊢
X
=
H
1
T
0
Assertion
coinflipspace
⊢
dom
⁡
P
=
𝒫
H
T
Proof
Step
Hyp
Ref
Expression
1
coinflip.h
⊢
H
∈
V
2
coinflip.t
⊢
T
∈
V
3
coinflip.th
⊢
H
≠
T
4
coinflip.2
⊢
P
=
.
↾
𝒫
H
T
∘
fc
⁡
÷
2
5
coinflip.3
⊢
X
=
H
1
T
0
6
4
dmeqi
⊢
dom
⁡
P
=
dom
⁡
.
↾
𝒫
H
T
∘
fc
⁡
÷
2
7
hashresfn
⊢
.
↾
𝒫
H
T
Fn
𝒫
H
T
8
7
a1i
⊢
H
∈
V
→
.
↾
𝒫
H
T
Fn
𝒫
H
T
9
prex
⊢
H
T
∈
V
10
pwexg
⊢
H
T
∈
V
→
𝒫
H
T
∈
V
11
9
10
mp1i
⊢
H
∈
V
→
𝒫
H
T
∈
V
12
2re
⊢
2
∈
ℝ
13
12
a1i
⊢
H
∈
V
→
2
∈
ℝ
14
8
11
13
ofcfn
⊢
H
∈
V
→
.
↾
𝒫
H
T
∘
fc
⁡
÷
2
Fn
𝒫
H
T
15
fndm
⊢
.
↾
𝒫
H
T
∘
fc
⁡
÷
2
Fn
𝒫
H
T
→
dom
⁡
.
↾
𝒫
H
T
∘
fc
⁡
÷
2
=
𝒫
H
T
16
1
14
15
mp2b
⊢
dom
⁡
.
↾
𝒫
H
T
∘
fc
⁡
÷
2
=
𝒫
H
T
17
6
16
eqtri
⊢
dom
⁡
P
=
𝒫
H
T