Metamath Proof Explorer


Theorem coinflipspace

Description: The space of our coin-flip probability. (Contributed by Thierry Arnoux, 15-Jan-2017)

Ref Expression
Hypotheses coinflip.h H V
coinflip.t T V
coinflip.th H T
coinflip.2 P = . 𝒫 H T fc ÷ 2
coinflip.3 X = H 1 T 0
Assertion coinflipspace dom P = 𝒫 H T

Proof

Step Hyp Ref Expression
1 coinflip.h H V
2 coinflip.t T V
3 coinflip.th H T
4 coinflip.2 P = . 𝒫 H T fc ÷ 2
5 coinflip.3 X = H 1 T 0
6 4 dmeqi dom P = dom . 𝒫 H T fc ÷ 2
7 hashresfn . 𝒫 H T Fn 𝒫 H T
8 7 a1i H V . 𝒫 H T Fn 𝒫 H T
9 prex H T V
10 pwexg H T V 𝒫 H T V
11 9 10 mp1i H V 𝒫 H T V
12 2re 2
13 12 a1i H V 2
14 8 11 13 ofcfn H V . 𝒫 H T fc ÷ 2 Fn 𝒫 H T
15 fndm . 𝒫 H T fc ÷ 2 Fn 𝒫 H T dom . 𝒫 H T fc ÷ 2 = 𝒫 H T
16 1 14 15 mp2b dom . 𝒫 H T fc ÷ 2 = 𝒫 H T
17 6 16 eqtri dom P = 𝒫 H T