| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coinflip.h |
|- H e. _V |
| 2 |
|
coinflip.t |
|- T e. _V |
| 3 |
|
coinflip.th |
|- H =/= T |
| 4 |
|
coinflip.2 |
|- P = ( ( # |` ~P { H , T } ) oFC / 2 ) |
| 5 |
|
coinflip.3 |
|- X = { <. H , 1 >. , <. T , 0 >. } |
| 6 |
4
|
dmeqi |
|- dom P = dom ( ( # |` ~P { H , T } ) oFC / 2 ) |
| 7 |
|
hashresfn |
|- ( # |` ~P { H , T } ) Fn ~P { H , T } |
| 8 |
7
|
a1i |
|- ( H e. _V -> ( # |` ~P { H , T } ) Fn ~P { H , T } ) |
| 9 |
|
prex |
|- { H , T } e. _V |
| 10 |
|
pwexg |
|- ( { H , T } e. _V -> ~P { H , T } e. _V ) |
| 11 |
9 10
|
mp1i |
|- ( H e. _V -> ~P { H , T } e. _V ) |
| 12 |
|
2re |
|- 2 e. RR |
| 13 |
12
|
a1i |
|- ( H e. _V -> 2 e. RR ) |
| 14 |
8 11 13
|
ofcfn |
|- ( H e. _V -> ( ( # |` ~P { H , T } ) oFC / 2 ) Fn ~P { H , T } ) |
| 15 |
|
fndm |
|- ( ( ( # |` ~P { H , T } ) oFC / 2 ) Fn ~P { H , T } -> dom ( ( # |` ~P { H , T } ) oFC / 2 ) = ~P { H , T } ) |
| 16 |
1 14 15
|
mp2b |
|- dom ( ( # |` ~P { H , T } ) oFC / 2 ) = ~P { H , T } |
| 17 |
6 16
|
eqtri |
|- dom P = ~P { H , T } |