Metamath Proof Explorer


Theorem coinflipspace

Description: The space of our coin-flip probability. (Contributed by Thierry Arnoux, 15-Jan-2017)

Ref Expression
Hypotheses coinflip.h
|- H e. _V
coinflip.t
|- T e. _V
coinflip.th
|- H =/= T
coinflip.2
|- P = ( ( # |` ~P { H , T } ) oFC / 2 )
coinflip.3
|- X = { <. H , 1 >. , <. T , 0 >. }
Assertion coinflipspace
|- dom P = ~P { H , T }

Proof

Step Hyp Ref Expression
1 coinflip.h
 |-  H e. _V
2 coinflip.t
 |-  T e. _V
3 coinflip.th
 |-  H =/= T
4 coinflip.2
 |-  P = ( ( # |` ~P { H , T } ) oFC / 2 )
5 coinflip.3
 |-  X = { <. H , 1 >. , <. T , 0 >. }
6 4 dmeqi
 |-  dom P = dom ( ( # |` ~P { H , T } ) oFC / 2 )
7 hashresfn
 |-  ( # |` ~P { H , T } ) Fn ~P { H , T }
8 7 a1i
 |-  ( H e. _V -> ( # |` ~P { H , T } ) Fn ~P { H , T } )
9 prex
 |-  { H , T } e. _V
10 pwexg
 |-  ( { H , T } e. _V -> ~P { H , T } e. _V )
11 9 10 mp1i
 |-  ( H e. _V -> ~P { H , T } e. _V )
12 2re
 |-  2 e. RR
13 12 a1i
 |-  ( H e. _V -> 2 e. RR )
14 8 11 13 ofcfn
 |-  ( H e. _V -> ( ( # |` ~P { H , T } ) oFC / 2 ) Fn ~P { H , T } )
15 fndm
 |-  ( ( ( # |` ~P { H , T } ) oFC / 2 ) Fn ~P { H , T } -> dom ( ( # |` ~P { H , T } ) oFC / 2 ) = ~P { H , T } )
16 1 14 15 mp2b
 |-  dom ( ( # |` ~P { H , T } ) oFC / 2 ) = ~P { H , T }
17 6 16 eqtri
 |-  dom P = ~P { H , T }