Metamath Proof Explorer


Theorem coinflipspace

Description: The space of our coin-flip probability. (Contributed by Thierry Arnoux, 15-Jan-2017)

Ref Expression
Hypotheses coinflip.h 𝐻 ∈ V
coinflip.t 𝑇 ∈ V
coinflip.th 𝐻𝑇
coinflip.2 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 )
coinflip.3 𝑋 = { ⟨ 𝐻 , 1 ⟩ , ⟨ 𝑇 , 0 ⟩ }
Assertion coinflipspace dom 𝑃 = 𝒫 { 𝐻 , 𝑇 }

Proof

Step Hyp Ref Expression
1 coinflip.h 𝐻 ∈ V
2 coinflip.t 𝑇 ∈ V
3 coinflip.th 𝐻𝑇
4 coinflip.2 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 )
5 coinflip.3 𝑋 = { ⟨ 𝐻 , 1 ⟩ , ⟨ 𝑇 , 0 ⟩ }
6 4 dmeqi dom 𝑃 = dom ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 )
7 hashresfn ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) Fn 𝒫 { 𝐻 , 𝑇 }
8 7 a1i ( 𝐻 ∈ V → ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) Fn 𝒫 { 𝐻 , 𝑇 } )
9 prex { 𝐻 , 𝑇 } ∈ V
10 pwexg ( { 𝐻 , 𝑇 } ∈ V → 𝒫 { 𝐻 , 𝑇 } ∈ V )
11 9 10 mp1i ( 𝐻 ∈ V → 𝒫 { 𝐻 , 𝑇 } ∈ V )
12 2re 2 ∈ ℝ
13 12 a1i ( 𝐻 ∈ V → 2 ∈ ℝ )
14 8 11 13 ofcfn ( 𝐻 ∈ V → ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) Fn 𝒫 { 𝐻 , 𝑇 } )
15 fndm ( ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) Fn 𝒫 { 𝐻 , 𝑇 } → dom ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) = 𝒫 { 𝐻 , 𝑇 } )
16 1 14 15 mp2b dom ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) = 𝒫 { 𝐻 , 𝑇 }
17 6 16 eqtri dom 𝑃 = 𝒫 { 𝐻 , 𝑇 }