| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coinflip.h |
⊢ 𝐻 ∈ V |
| 2 |
|
coinflip.t |
⊢ 𝑇 ∈ V |
| 3 |
|
coinflip.th |
⊢ 𝐻 ≠ 𝑇 |
| 4 |
|
coinflip.2 |
⊢ 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) |
| 5 |
|
coinflip.3 |
⊢ 𝑋 = { 〈 𝐻 , 1 〉 , 〈 𝑇 , 0 〉 } |
| 6 |
4
|
dmeqi |
⊢ dom 𝑃 = dom ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) |
| 7 |
|
hashresfn |
⊢ ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) Fn 𝒫 { 𝐻 , 𝑇 } |
| 8 |
7
|
a1i |
⊢ ( 𝐻 ∈ V → ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) Fn 𝒫 { 𝐻 , 𝑇 } ) |
| 9 |
|
prex |
⊢ { 𝐻 , 𝑇 } ∈ V |
| 10 |
|
pwexg |
⊢ ( { 𝐻 , 𝑇 } ∈ V → 𝒫 { 𝐻 , 𝑇 } ∈ V ) |
| 11 |
9 10
|
mp1i |
⊢ ( 𝐻 ∈ V → 𝒫 { 𝐻 , 𝑇 } ∈ V ) |
| 12 |
|
2re |
⊢ 2 ∈ ℝ |
| 13 |
12
|
a1i |
⊢ ( 𝐻 ∈ V → 2 ∈ ℝ ) |
| 14 |
8 11 13
|
ofcfn |
⊢ ( 𝐻 ∈ V → ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) Fn 𝒫 { 𝐻 , 𝑇 } ) |
| 15 |
|
fndm |
⊢ ( ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) Fn 𝒫 { 𝐻 , 𝑇 } → dom ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) = 𝒫 { 𝐻 , 𝑇 } ) |
| 16 |
1 14 15
|
mp2b |
⊢ dom ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) = 𝒫 { 𝐻 , 𝑇 } |
| 17 |
6 16
|
eqtri |
⊢ dom 𝑃 = 𝒫 { 𝐻 , 𝑇 } |