Step |
Hyp |
Ref |
Expression |
1 |
|
coinflip.h |
⊢ 𝐻 ∈ V |
2 |
|
coinflip.t |
⊢ 𝑇 ∈ V |
3 |
|
coinflip.th |
⊢ 𝐻 ≠ 𝑇 |
4 |
|
coinflip.2 |
⊢ 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) |
5 |
|
coinflip.3 |
⊢ 𝑋 = { 〈 𝐻 , 1 〉 , 〈 𝑇 , 0 〉 } |
6 |
4
|
dmeqi |
⊢ dom 𝑃 = dom ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) |
7 |
|
hashresfn |
⊢ ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) Fn 𝒫 { 𝐻 , 𝑇 } |
8 |
7
|
a1i |
⊢ ( 𝐻 ∈ V → ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) Fn 𝒫 { 𝐻 , 𝑇 } ) |
9 |
|
prex |
⊢ { 𝐻 , 𝑇 } ∈ V |
10 |
|
pwexg |
⊢ ( { 𝐻 , 𝑇 } ∈ V → 𝒫 { 𝐻 , 𝑇 } ∈ V ) |
11 |
9 10
|
mp1i |
⊢ ( 𝐻 ∈ V → 𝒫 { 𝐻 , 𝑇 } ∈ V ) |
12 |
|
2re |
⊢ 2 ∈ ℝ |
13 |
12
|
a1i |
⊢ ( 𝐻 ∈ V → 2 ∈ ℝ ) |
14 |
8 11 13
|
ofcfn |
⊢ ( 𝐻 ∈ V → ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) Fn 𝒫 { 𝐻 , 𝑇 } ) |
15 |
|
fndm |
⊢ ( ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) Fn 𝒫 { 𝐻 , 𝑇 } → dom ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) = 𝒫 { 𝐻 , 𝑇 } ) |
16 |
1 14 15
|
mp2b |
⊢ dom ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) = 𝒫 { 𝐻 , 𝑇 } |
17 |
6 16
|
eqtri |
⊢ dom 𝑃 = 𝒫 { 𝐻 , 𝑇 } |